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Introduction

El Niño-Southern Oscillation (ENSO) is
the largest tropical interannual mode of
climate variability and it is a common
feature forecasted by operational centres
that deliver seasonal to multi-year fore-
casts. Here we explore the potential
predictability of the tropical Pacific us-
ing the Climate Analysis Forecasting En-
semble (CAFE) system and compare the
predictability of Sea Surface Temperature
(SST) with the predictability of air-sea
CO2 flux (FCO2) and Net Primary Pro-
duction (NPP) .

CAFE system
The CAFE climate model is similar to CM2.1 (Ref 1),
and it uses:

•MOM5 ocean model with SIS sea ice. The grid is
tri-polar with nominal resolution of 1◦, with extra lat-
itudinal resolution in the tropics (0.33◦ at the equa-
tor) and in the Southern Ocean (0.25◦ at 75◦S).
Subgrid processes are adopted from CM2.1, in-
cluding neutral physics (Redi diffusivity and Gent-
McWilliams skew diffusion), Brian-Lewis vertical
mixing profile, Lagrangian friction scheme and a K-
profile parameterisation for the mixed layer calcula-
tion.

•AM2 atmosphere model with resolution of 2◦ in
latitude and 2.5◦ longitude, and 24 hybrid (sigma-
pressure or terrain following pressure) vertical lev-
els.

•LM2 land model which is on the same horizontal
grid as AM2.

The climate model is run for 500 years (Ref 2) and
the climate displays significant multi-decadal vari-
ability as demonstrated by the change in NINO3.4
variability over the simulated period (Fig. 1).

Figure 1: NINO3.4 Wavelet power spectrum as a
function of the year of the climate simulation

Forecast Simulations
An ensemble forecast of 10 members is made on
January 1 for every fifteenth year from model years
305 to 455 (12 forecasts). The initial climate state
for the forecast is generated by adding random per-
turbations (less than 0.001◦C ) to the SST in the
tropics (20◦S to 20◦N) to the true climate state.

Predictability
NINO3.4
There is significant predictability (r >0.5) out to 24
months (Fig. 2).
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Figure 2: NINO3.4 Anomaly Correlation Coefficient

SST
At both 12 and 24 month lead times most of the trop-
ical Pacific displays significant predictability (Fig. 3).
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Figure 3: SST anomaly correlation coefficient for
monthly forecasts at 12-month (top) and 24-month
(bottom) lead times.

Air-Sea CO2 Flux
The CO2 flux displays significant predictability with
the region of predictability moving to the west with
lead time (Fig. 4).
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Figure 4: FCO2 anomaly correlation coefficient for
monthly forecasts at 12-month (top) and 24-month
(bottom) lead times

Net Primary Production
NPP displays patches of predictability (Fig. 5),
which change with lead time.
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Figure 5: NPP anomaly correlation coefficient for
monthly forecasts at 12-month (top) and 24-month
(bottom) lead times

Summary
• Predictability is greatest for SST

• FCO2 has comparable predictability to SST but
FCO2 shows a prominent shift in predictability to the
west with longer lead times.

• In contrast to previous work (Ref. 3), NPP shows
less predictability than SST. Perhaps NPP pre-
dictability is sensitive to how biological processes
are parameterised.

• Greater predictability of FCO2 than NPP suggests
that FCO2 is more sensitive to physical variability
than biological variability.

• Additional forecasts are needed to isolate the
cause of the poor NPP predictability


