

Subsurface variability and teleconnections in the Indian Ocean

Chris Chapman, Bernadette Sloyan, Terry O'Kane

Didier Monselasen, Matt Chamberlain, James Risbey

CSIRO Oceans and Atmosphere Decadal Forecasting Project www.csiro.au

Variability and Circulation in the Indian Ocean

CSIRO

Indian Ocean Variability: Slide 2 of 28

CSIRO

Indian Ocean Variability: Slide 3 of 28

- Some signature in SSH altimetry (Briol & Morrow 2000);
- Intrinsic mode found in long, ocean-only, coarse resolution models (O'Kane et al. 2014; Wolff & Cessi 2016) and SODA reanalysis (Vargas-Hernandez et al. (2014);
- Possible signature in sea-surface salinity (Menendez et al. (2015);
- Not yet noted in in-situ measurements (we're working on it).

Coupled Climate Model

- We use the DFP's Climate Analysis Forecast Ensemble (CAFÉ) modelling system (O'Kane et al. 2018);
- Very similar to GFDL's CM2.1 (modified ocean grid);
- MOM4 ocean model; AM2 atmosphere; SIS sea-ice; LM2 land surface;
- \sim 1° grid in the ocean, telescopes to \sim 1/3° near the equator, 2.5° in the atmosphere;
- Restoring to WOD climatology below 2000m depth (1 year restoring time scale);

Coupled Climate Model

• 500 year long control simulation - final 200 years used after the model is in an "almost" equilibrium state;

CSIRO

Indian Ocean Variability: Slide 7 of 28

In band variance of σ_{θ} (surface referenced)

CSIRO

Indian Ocean Variability: Slide 8 of 28

CSIRO

3D complex (Hilbert) EOFs of σ_{θ} (referenced to the surface) Colors: real part; contours: imaginary part

Indian Ocean Variability: Slide 9 of 28

Complex EOF time series Black: real component; red: imaginary part

Hovmöller (longitude/time) plots of σ_{θ} along the northern (left) and southern (right) waveguides

CSIRO

Indian Ocean Variability: Slide 11 of 28

Summary of the Propagating Disturbance

- Basin crossing time scale: ~4 years;
- Length Scale: 500–1000km;
- Propagation speed: 10cm/s (substantially slower than theoretical Rossby wave speed);
- Likely substantially non-linear;
- Shows evidence of topographic interaction;

Hovmöller (longitude/time) plots of σ_{θ} along the northern (left) and southern (right) waveguides

CSIRO

Indian Ocean Variability: Slide 13 of 28

Complex (Hilbert) EOFs of SST Colors: real part; contours: imaginary part - < 0 (-)

CSIRO

> 0 (+)

Indian Ocean Variability: Slide 14 of 28

To quantify the influence of the propagating disturbance on the surface ocean, we calculate the *Dynamic Height Anomaly* or *Relative Geostrophic Streamfunction* from model temperature and salinity:

$$\psi_g(x, y, t; p, p_{\text{ref}}) = -\int_{p_{\text{ref}}}^p \delta(x, y, t; p') \, dp' \tag{1}$$

CSIRO

where:

 $\delta {=} {\rm specific}$ volume anomaly (function of temperature and salinity); and

$$\mathbf{e}_z \times \nabla \psi_g(p, p_{\text{ref}}) = f[\mathbf{u}(p) - \mathbf{u}(p_{\text{ref}})]$$

Has the benefit of being a *depth integrated measure*

Essentially the thermal wind.

1.5 1.0 6 5 Geostrophic Streamfunction (m.².s⁻¹) -1.0 -1.5

Colors: Geostrophic streamfunction anomaly referenced to 500db Vectors: Surface Geostrophic Current (relative to 500db flow)

Lagged autocorrelation function at lags between 1 month and 10 years

CSIRO

Indian Ocean Variability: Slide 18 of 28

CSIRO

Lagged autocorrelation function at lags between 1 month and 10 years

Indian Ocean Variability: Slide 20 of 28

1D mixed layer heat budget:

$$\rho_0 C_p \left[\frac{\partial \Theta}{\partial t} + \mathbf{u} \cdot \nabla_{xy} \Theta + w \frac{\partial \Theta}{\partial z} \right] = \frac{\partial Q_{\text{net}}}{\partial z}$$
(2)

where Θ = conservative temperature (TEOS-10) integrate over the temporally varying mixed layer depth h(t)

$$\frac{\partial \Theta}{\partial t} \approx \mathcal{F}_{\text{Atmos.}} + \mathcal{F}_{\text{Eddies}} - \lambda \overline{\Theta}$$
(3)

CSIRO

where: $\overline{\Theta} = \int_{h(t)}^{0} \Theta dz$

Indian Ocean Variability: Slide 21 of 28

$$\frac{\partial \overline{\Theta}}{\partial t} \approx \mathcal{F}_{\text{Atmos.}} + \mathcal{F}_{\text{Eddies}} - \lambda \qquad overline\Theta$$

 $\mathcal{F}_{Atmos.}$ = Surf. Heat Flux + Ekman Advection + Ekman Pumping \mathcal{F}_{Eddies} = Geostrophic Advection + Entrainment at MLD Base λ = damping parameter (inverse decay timescale)

CSIRO

Indian Ocean Variability: Slide 22 of 28

Standard Deviation of the (top): SST; (middle); Eddy Forcing; and (bottom): Atmospheric Forcing.

CSIRO

Indian Ocean Variability: Slide 23 of 28

CSIRO

Autocorrelation structure of the individual terms in the MLD heat budget.

Indian Ocean Variability: Slide 24 of 28

Stochastic Model of the SST variation

In spectral space, MLD heat budget becomes:

$$(\omega^{2} + \lambda^{2}) P_{\Theta\Theta} = P_{F_{\text{atmos}}F_{\text{atmos}}} + P_{F_{\text{eddy}}F_{\text{eddy}}} - P_{F_{\text{atmos}}F_{\text{eddy}}} - P_{F_{\text{eddy}}F_{\text{atmos}}}$$
(4)

where $P_x y$ = is the power spectrum of the x and y (so we include cross terms)

CSIRO

Power Spectrum of the stochastic model of SST variation

Indian Ocean Variability: Slide 26 of 28

Conclusions

- Robust signature of variability on long (2-5 years) in the subsurface Indian ocean;
- Teleconnection between eastern and western sides of the basin;
- Feature has a substantial surface expression and influence on SSTs on long time scales;
- Intrinsic mode: shows some predectability.

Thank You

CSIRO Oceans and Atmosphere

Chris Chapman

- t +61 402 089 180
- e chris.chapman@csiro.au
- w http://www.chrischapman.eu/

CSIRO Oceans and Atmosphere Decadal Forecasting Project www.csiro.au

