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Well-estimated global surface warming in climate
projections selected for ENSO phase
James S. Risbey1*, Stephan Lewandowsky2,3, Clothilde Langlais1, Didier P. Monselesan1,
Terence J. O’Kane1 and Naomi Oreskes4

The question of how climate model projections have tracked the actual evolution of global mean surface air temperature is
important in establishing the credibility of their projections. Some studies and the IPCC Fifth Assessment Report suggest that
the recent 15-year period (1998–2012) provides evidence that models are overestimating current temperature evolution. Such
comparisons are not evidence against model trends because they represent only one realization where the decadal natural
variability component of the model climate is generally not in phase with observations. We present a more appropriate
test of models where only those models with natural variability (represented by El Niño/Southern Oscillation) largely in
phase with observations are selected from multi-model ensembles for comparison with observations. These tests show
that climate models have provided good estimates of 15-year trends, including for recent periods and for Pacific spatial
trend patterns.

The differences between climate model forecasts and
projections1 have come to prominence over interpretation
of model simulations of recent temperature trends. A key

difference between a climate forecast and a climate projection is
that the former attempts to account for the correct phase of natural
internal climate variations whereas the latter does not and can not.

A weather forecast attempts to account for the growth of
particular synoptic eddies and is said to have lost skill when model
eddies no longer correspond one to one with those in the real
world. Similarly, a climate forecast of seasonal or decadal climate
attempts to account for the growth of disturbances on the timescale
of those forecasts. This means that the model must be initialized
to the current state of the coupled ocean–atmosphere system and
the perturbations in the model ensemble must track the growth
of El Niño/Southern Oscillation2,3 (ENSO) and other subsurface
disturbances4 driving decadal variation. Once the coupled climate
model no longer keeps track of the current phase of modes such as
ENSO, it has lost forecast skill for seasonal to decadal timescales. The
model can still simulate the statistical properties of climate features
from this point, but that then becomes a projection, not a forecast.

The Coupled Model Intercomparison Project 5 (CMIP5) series
of coupled climate models have been run in climate projections
mode5 and, to a limited extent, in decadal forecasting mode6.
The models run as climate projections apply best estimates of
the historical sequence of radiative forcing of climate for the past
(until 2005), followed by specified future forcing scenarios. That
means that until 2005 the models attempt to stay in sequence only
with the year to year and decade to decade fluctuations in climate
caused by the historical variation in radiative forcing (and not with
internal variations).

Decadal variations in surface climate are due to a range of fac-
tors7,8. These factors include radiative forcing variations, but they are
not the only, or even the most important, factors. Natural internal
variations in the climate system also drive decadal variations9–11.
These can occur for example through variations in the rate at which
the ocean circulation takes up the additional heat added to the

atmosphere from greenhouse forcing12,13. Long-term variations in
the preference of the coupled system for La Niña and El Niño states
(the Pacific Decadal Oscillation14 (PDO)) change the rate of ocean
heat uptake and are a key driver of decadal variability13,15.

In the CMIP5 models run using historical forcing there is no
way to ensure that the model has the same sequence of ENSO
events as the real world. This will occur only by chance and only
for limited periods, because natural variability in the models is
not constrained to occur in the same sequence as the real world.
For any 15-year period the rate of warming in the real world
may accelerate or decelerate depending on the phase of ENSO
predominant over the period. That means that for a set of model
projections well calibrated to the range of natural variability, there
will be some 15-year periods where the observed rate of warming
is in the low tail of the distribution of model trends for that
15-year period, and some 15-year periodswhere the observed rate of
warming is in the high tail of themodel distribution. These cases are
illustrated by the 15-year observed trend and CMIP5 model trend
distribution for 1998–2012 (Fig. 1a) and 1984–1998 (Fig. 1b). These
two periods are no more meaningful in evaluating projections than
any other 15-year periods, and we focus on the former here only to
evaluate claims made about model projections in the most recent
15-year period7,16.

The precise degree to which the observed trend in Fig. 1a is in
the extreme low tail is open to question. When one accounts for a
range of observational trend estimates by using series that include
a representation of the Arctic region17,18, the observed estimates fall
further inside the model distribution (blue and red lines in Fig. 1a)
than for the HadCRUT4 trend (dashed red).

Regardless of just where in the tail they fall, the fact that
the observed trends in Fig. 1a for the recent 15-year period are
in the low tail of the model distribution7,16 does not constitute
evidence against the fidelity of model trend projections because it
is only one realization of 15-year periods. In a properly constructed
model forecast ensemble19, a single observed realization lying in
the tail of the model ensemble provides no more evidence against
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Figure 1 | Model ensemble trends and observational trends. a,b, Histogram of trends for 1998–2012 (a) and 1984–1998 (b) for the CMIP5 multi-model
ensemble. The thin vertical lines show the observed trend for these periods from HadCRUT4 (dashed red), GISS (blue) and Cowtan and Way (red).
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Figure 2 | Running 15-year trends. The coloured lines show the observed
estimates of 15-year global mean surface air temperature (GMST) trends
plotted at the central year of the 15-year period for GISS (blue), HadCRUT4
(dashed red) and Cowtan and Way (red). The grey envelope spans the 2.5
percentile and 97.5 percentile estimate of the distribution of CMIP5
ensemble trends over the same 15-year periods. The black dashed lines
encompass the full CMIP5 model ensemble trends.

the model forecast than a single observed realization lying on
the ensemble median. Forecast ensemble members have similar
likelihood regardless of where they lie and the real worldmay follow
any of them.

To see how representative the two 15-year periods in Fig. 1 are of
the models’ ability to simulate 15-year temperature trends we need
to test many more 15-year periods. Using data from CMIP5 models
and observations for the period 1880–2012, we have calculated
sliding 15-year trends in observations and models over all 15-year
periods in this interval (Fig. 2). The 2.5–97.5 percentile envelope of
model 15-year trends (grey) envelops within it the observed trends
for almost all 15-year periods for each of the observational data sets.
There are several periods when the observed 15-year trend is in the
warm tail of the model trend envelope (∼1925, 1935, 1955), and
several periods where it is in the cold tail of the model envelope
(∼1890, 1905, 1945, 1970, 2005). In other words, the recent ‘hiatus’
centred about 2005 (1998–2012) is not exceptional in context. One
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Figure 3 | Trend histograms. Histogram (blue) of the 15-year trend
estimates for all 15-year periods plotted in Fig. 2 for all three observational
data sets. The probability density function over the histogram (red) is the
kernel density estimate of the distribution of all CMIP5 model trends for all
15-year periods.

expects the observed trend estimates in Fig. 2 to bounce about
within the model trend envelope in response to variations in the
phase of processes governing ocean heat uptake rates, as they do.

The variations in the grey envelope of model trends with time
in Fig. 2 represent primarily variations in forcing, because the
multi-model ensemble tends to average out the internal variations
(which are not phase locked between models or with observations).
On the other hand, the observed 15-year trends respond to both
variations in forcing and internal variations. Any mismatch in
forcing (between the models and real world) or any large natural
excursion in the rate of ocean heat uptakemoves the observed global
mean surface air temperature (GMST) trend up or down within the
model distribution represented by the grey envelope.

The histogram of observed temperature trends for all 15-year
periods over 1880–2012 is shown in Fig. 3. Plotted over this
histogram is the distribution of 15-year trends from all the CMIP5
models for the same set of 15-year periods over 1880–2012. The
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Figure 4 | Model phase-selected trends and observed trends. a–d, The red dots on the thin red line correspond to the 15-year observed trends for each
15-year period in GISS (a,b) and Cowtan and Way (c,d). The red envelope shows a 2.5–97.5 percentile loess-smoothed fit to the observed 15-year trends.
The blue dots (a,c) show the 15-year average trends from only those CMIP5 runs in each 15-year period where the model Niño3.4 trend is close to the
observed Niño3.4 trend. The size of the blue dot is proportional to the number of models selected. If fewer than two models are selected in a period, they
are not included in the plot. The blue envelope is a 2.5–97.5 percentile loess-smoothed fit to the model 15-year trends weighted by the number of models
at each point. b and d contain the same observed trends in red for GISS and Cowtan and Way respectively. The grey dots show the average 15-year trends
for only the models with the worst correspondence to the observed Niño3.4 trend. The grey envelope in b and d is defined as for the blue envelope
in a and c. Results for HadCRUT4 (not shown) are broadly similar to those of Cowtan and Way.

observed and model distributions are broadly similar, consistent
with the above results. The observed trend median is slightly higher
(warmer) than the model median, and the models have a slightly
larger spread of 15-year trend values.

Taken as a collective of 15-year periods over the period since
1880, the CMIP5 models provide a remarkably good representation
of 15-year observed trends. If we wish to evaluate the model trends
over just the single 15-year period, 1998–2012, we have only one
observed realization to compare with models that are generally
not in phase with the internal variability of the observed system.
There are several different approaches that have been used to
bring the models in to phase with the real world. We discuss
two popular methods and present an alternative third approach
that we employ.

Climate forecasts
The desired solution to this problem is to do a climate forecast, not
a projection. For a climate forecast one would test models that were
initialized in 1998 and run with ensemble perturbations designed
to track the major decadal instability modes (ENSO, PDO) in the
ocean. Decadal forecasting efforts so far show some improvements
due to initialization, but are still in relative infancy20.

Forced/restored projections
Another approach to ensure that the models have the same ENSO
phase as the real world is to impose observed sea surface temper-
atures21 (SSTs) or observed winds22 in the tropical Pacific region
of the model. This approach can be applied to ocean-only models.
For coupled models this method requires that the model SST or
wind stress field be restored rapidly to the observed fields. The
forced/restored projection forces the models to lock phase with ob-
served ENSO, although this partly specifies a temperature outcome
consistent with observations. When applied in coupled models the
results are also unphysical in that part of the model surface field is
effectively specified and part is free. Other approaches include post
hoc removal of a regression estimate of the ENSOphase contribution
from model ensemble mean temperature23.

Phase-selected projections
Here we develop and apply an alternative simple, but natural
(unforced), method to analyse model projections in phase with the
real world. The models are not given any information about the
observed state in this approach. The method takes advantage of the
fact that, by chance, some of the CMIP5 model runs will be at least
partially in phase at any given time with internal variability in the
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Figure 5 | Composite sea surface temperature (SST) spatial trends (kelvin
per decade). a–c, Composite of 15-year SST trends over 1998–2012 for
CMIP5 models best in phase with Niño3.4 trends (a), CMIP5 models least
well in phase with Niño3.4 trends (b) and HadISST observations (c).

real world. One of the major processes driving variability in the rate
of ocean heat uptake is ENSO (ref. 13). The long-term cycle of ENSO
in switching between El Niño-preferred periods (slower ocean heat
uptake decades) and La Niña-preferred periods (faster ocean heat
uptake decades) will by chance line up in some of the CMIP5

models. To select this subset of models for any 15-year period, we
calculate the 15-year trend in Niño3.4 index24 in observations and
in CMIP5models and select only thosemodels with a Niño3.4 trend
within a tolerance window of ±0.01K y−1 of the observed Niño3.4
trend. This approach ensures that we select only models with a
phasing of ENSO regime and ocean heat uptake largely in line with
observations. In this case we select the subset of models in phase
with observations from a reduced set of 18 CMIP5 models where
Niño3.4 data were available25 and for the period since 1950 when
Niño3.4 indices are more reliable in observations.

Figure 4 shows the running 15-year trends for observations in
red (Goddard Institute for Space Studies18 (GISS) top row; Cowtan
and Way17 bottom row) and for the subset of CMIP5 models that
fell within the Niño3.4 trend tolerance window in blue in the left
column. The right column shows model 15-year trends for the
subset of models in grey that were furthest from the observed
Niño3.4 slope (least in phase with observations), where the subset
of models is constrained so that it contains the same number of
models that fell within the best-fit tolerance window. The size of
plotting symbol for model trends is proportional to the number of
models that fell within theNiño3.4 tolerancewindow. The solid lines
are loess-smoothed fits to the trend points. The loess smoothing
is weighted by the number of models that contributed to each
observation. The shaded areas surrounding each loess line represent
approximate 95% confidence intervals.

The results in Fig. 4b,d show that selecting models with ENSO
well out of phase with observations (grey curves) yields 15-year
trends that can be very different from observations, and which are
mostly not in accord with the observed trends. In contrast, selecting
models with ENSO largely in phase with observed ENSO (Fig. 4a,c;
blue curves) yields 15-year trend estimates that are mostly in accord
with observed trends. Further, even the 1998–2012 trend in the
models lines upwell with the observed trendwhen onlymodels with
a similar ENSO regime phase are used to estimate the trend. The
selection ofmodels in phasewith ENSO regimes thus removesmuch
of the apparent discrepancy that occurs when model projections
are compared with observational realizations irrespective of model
natural internal variability phase.

The composite pattern of spatial 15-year trends in the selection
of models in/out of phase with ENSO regime is shown for the
1998–2012 period in Fig. 5. The models in phase with ENSO
(Fig. 5a) exhibit a PDO-like pattern of cooling in the eastern Pacific,
whereas the models least in phase (Fig. 5b) show more uniform
El Niño-like warming in the Pacific. The set of models in phase
with ENSO produce a spatial trend pattern broadly consistent with
observations (Fig. 5c) over the period. This result is in contrast to
the full CMIP5 multi-model ensemble spatial trends, which exhibit
broad warming26 and cannot reveal the PDO-like structure of the
in-phase model trends because the internal modes of variability are
mostly averaged out.

To put the subset of phase-selected model projections in context
with the full multi-model projection ensemble we compare them
together in Fig. 6. The figure shows how the selection of models
in phase with ENSO regimes changes the expected model warming
trend relative to the full multi-model warming trend envelope. As
noted, the grey all-model envelope moves up and down mostly
owing to variations in forcing (as the variations due to internal
variability tend to average out across many model realizations),
whereas in the observations the 15-year trends move up and down
owing to forcing and the cycles of natural variability. By selecting
a subset of models in phase with the observed ENSO regime
(blue curve) we introduce some variation due to ENSO in the
model 15-year trends. Critically, this variation brings the expected
model trends down towards the bottom part of the all-model trend
envelope for recent 15-year trends. Models in phase with ENSO
warm less rapidly during this period.
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Figure 6 | Model ensemble trends and model phase-selected trends.
The grey envelope represents the 2.5–97.5 percentile estimates of 15-year
global mean surface air temperature trends from all model runs. The blue
dots are the 15-year trend estimates from the models best in phase with
Niño3.4 trends shown in Fig. 4a,c. The blue envelope is a 2.5–97.5
percentile loess-smoothed fit to the model 15-year trends weighted by the
number of models at each point.

This method of phase aligning to select appropriate model
trend estimates will not be perfect as the models contain errors
in the forcing histories27 and errors in the simulation of ENSO
(refs 25,28) and other processes. Further, ENSO is not the only
process generating natural variability on these timescales and so the
method used here can be only approximate. Nonetheless, the phase-
selection method provides a fairer and more appropriate basis to
compare model projection trends over decadal-scale periods than
use of the entire multi-model envelope. When the phase of natural
variability is taken into account, the model 15-year warming trends
in CMIP5 projections well estimate the observed trends for all
15-year periods over the past half-century.

Methods
Observational and model data. Three observational data sets are used to
represent annual GMST: GISS (ref. 18); HadCRUT4 (ref. 29); and Cowtan and
Way17. GMST is also taken from 38 CMIP5 models with multiple runs per model
generating a multi-model ensemble with 82 runs. The CMIP5 ensemble runs
span 1880–2012 with historical forcing for the period 1880–2005 and
Representative Concentration Pathway 8.5 (RCP8.5; ref. 30) forcing from 2006 to
2012. As the latter time period is so short, the choice of RCP scenario is not
critical here. Results were repeated using RCP4.5 for the latter period and are
very similar. A subset of 18 of the 38 CMIP5 models were available to us with
SST data to compute Niño3.4 (ref. 24) indices. The subset of models are indicated
in bold in the set below. The reduced set of 18 models provides a similar model
ensemble trend distribution to the larger model set. Niño3.4 values for
observations were downloaded from NOAA at
http://www.esrl.noaa.gov/psd/data/climateindices/list/. Spatial SST trends were
calculated from HadISST data31.

The set of CMIP5 models used are: ACCESS1-0, ACCESS1-3, bcc-csm1-1,
bcc-csm1-1-m, BNU-ESM, CanESM2, CCSM4, CESM1-BGC, CESM1-CAM5,
CMCC-CM, CMCC-CMS, CNRM-CM5, CSIRO-Mk3-6-0, EC-EARTH,
FGOALS-s2, FIO-ESM, GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M,
GISS-E2-H, GISS-E2-H-CC, GISS-E2-R, GISS-E2-R-CC, HadGEM2-AO,
HadGEM2-CC, HadGEM2-ES, INMCM4, IPSL-CM5A-LR, IPSL-CM5A-MR,
IPSL-CM5B-LR, MIROC-ESM, MIROC-ESM-CHEM, MIROC5, MPI-ESM-LR,
MPI-ESM-MR, MRI-CGCM3, NorESM1-M and NorESM1-ME.

Phase-selected climate projection. The method of phase-selected climate
projection is based on selecting a feature of the climate that one wishes to align to
the real-world phase of the feature. As we are interested in tracking decadal
fluctuations in GMST, we need to follow natural variations in ocean heat uptake

on this timescale. These are driven by a range of processes in tropical and
high-latitude oceans11,32, but ENSO is one of the important ones and is at least
broadly simulated by the coupled models.

Climate models cannot simulate every ENSO phase transition, but that is not
critical here. To approximate the phase of ocean heat uptake in a 15-year period
one may need to capture only the general sense of whether the models are El
Niño or La Niña dominated over the period. To this end we use Niño3.4 as an
index of ENSO phase and calculate the trend in Niño3.4 over the period to
indicate the general tendency of the system towards regimes dominated by either
ENSO state (similar to PDO phases). Models with a similar Niño3.4 trend to
observations are then selected to represent the subset of models from the
projection ensemble that just happen to have a similar response of ENSO over
the 15-year period. This approach selects models with a statistical similarity that
is related to the desired feature (ocean heat uptake). The approach does not
guarantee any kind of dynamical consistency between models for each
15-year period.

The choice to fit 15-year trends to Niño3.4 is not the only way to estimate
the phase of ocean heat uptake rates. We also tested a method based on trends
of low-pass Niño3.4 values to more directly mimic the PDO. Results were
repeated where we detrended the Niño3.4 series in observations and models
and compared the low-pass Niño3.4 slopes to select in-phase models. The
results for the low-pass method are very similar to those for the direct
method shown.

The probability density function (PDF) of observed and modelled 15-year
GMST trends in Fig. 3 is based on 82 model runs over 1880–2012, but only 3
observational data sets, and thus contains different sample sizes. To control for
sample size, the model PDFs were recalculated with 500 random samples of
model 15-year trends with the same sample size as the number of observed
trends. This yields very similar model distributions to those in Fig. 3, indicating
that any differences between the model and observed PDF are mostly not due to
sample size differences.
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