

Global observational synthesis to constrain recent changes in the ocean carbon uptake

www.csiro.au

A Lenton, R J Matear, T J O'Kane, M Chamberlain, T Ziehn, R M Law

Motivation – Models and Obs

Earth Syst. Sci. Data, 8, 605–649, 2016 www.earth-syst-sci-data.net/8/605/2016/ doi:10.5194/essd-8-605-2016 @ Author(s) 2016. CC Attribution 3.0 License.

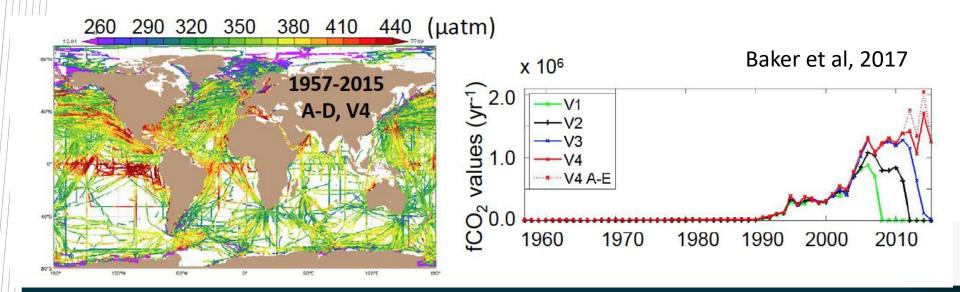
Global Carbon Budget 2016

Corinne Le Quéré¹, Robbie M. Andrew², Josep G. Canadell³, Stephen Sitch⁴, Jan Ivar Korsbakken², Glen P. Peters², Andrew C. Manning⁵, Thomas A. Boden⁶, Pieter P. Tans⁷, Richard A. Houghton⁸, Ralph F. Keeling⁹, Simone Alin¹⁰, Oliver D. Andrews¹, Peter Anthoni¹¹, Leticia Barbero^{12,13}, Laurent Bopp¹⁴, Frédéric Chevallier¹⁴, Louise P. Chini¹⁵, Philippe Ciais¹⁴, Kim Currie¹⁶, Christine Delire¹⁷, Scott C. Doney¹⁸, Pierre Friedlingstein¹⁹, Thanos Gkritzalis²⁰, Ian Harris²¹, Judith Hauck²², Vanessa Haverd²³, Mario Hoppema²², Kees Klein Goldewijk²⁴, Atul K. Jain²⁵, Etsushi Kato²⁶, Arne Körtzinger²⁷, Peter Landschützer²⁸, Nathalie Lefèvre²⁹, Andrew Lenton³⁰, Sebastian Lienert^{31,32}, Danica Lombardozzi³³, Joe R. Melton³⁴, Nicolas Metzl²⁹, Frank Millero³⁵, Pedro M. S. Monteiro³⁶, David R. Munro³⁷, Julia E. M. S. Nabel²⁸, Shin-ichiro Nakaoka³⁸, Kevin O'Brien³⁹, Are Olsen⁴⁰, Abdirahman M. Omar⁴⁰, Tsuneo Ono⁴¹, Denis Pierrot^{12,13}, Benjamin Poulter^{42,43}, Christian Rödenbeck⁴⁴, Joe Salisbury⁴⁵, Us Schuster⁴, Jörg Schwinger⁴⁶, Roland Séférian¹⁷, Ingunn Skjelvan⁴⁶, Benjamin D. ^{Strackav47}, ⁴ distance J. ^{Sustan 30,10}, Tara Tatabach¹⁴⁸ Hanqin Tian⁴⁹, Bronte Tilbrook⁵⁰, Ingrid T. v

In Tian⁴⁹, Bronte Tilbrook⁴⁰, Ingrid T. v Nicolas Viovu¹⁴, Anthony P. Walker⁵³, A Recent variability of the global ocean carbon sink

P. Landschützer^{1,2}, N. Gruber¹, D. C. E. Bakker², and U. Schuster³

¹Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich, Switzerland, ²Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, UK, ³College of Life and Environmental Sciences, Hatherly Laboratories, University of Exeter, Exeter, UK



Dorothee's excellent SOCAT talk

Motivation – Models or Obs?

- However, the limited observations of the ocean carbon cycle necessitate some degree of interpolation and/or large-scale spatial and temporal averaging.
- This has the potential either to bias or alias the results toward a dynamically inconsistent ocean state thereby making understanding the drivers of these changes challenging.

Geosci. Model Dev., 9, 1827–1851, 2016 www.geosci-model-dev.net/9/1827/2016/ doi:10.5194/gmd-9-1827/2016 © Author(s) 2016. CC Attribution 3.0 License.

Inconsistent strategies to spin up models in CMIP5: implications for ocean biogeochemical model performance assessment

Roland Séférian¹, Marion Gehlen², Laurent Bopp², Laure Resplandy^{3,2}, James C. Orr², Olivier Martl², John P. Dunne⁴, James R. Christian⁵, Scott C. Doney⁶, Tatiana Ilyina⁷, Keith Lindsay⁸, Paul R. Halloran⁶, Christoph Heinze^{10,13}, Joachim Segechneider¹², Jerry Tjiputra¹¹, Olivier Aumont¹³, and Anastasia Romanou^{14,15}

Models have issues also - often large biases and unphysical states

To answer this question we <u>better global state estimates</u> that allow us to really understanding the processes

This allows us to understand the processes and mechanisms

Can we the use the increasing observations?

Physics drives changes?

LETTER

doi:10.1038/nature21068

Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning

Tim DeVries^{1,2}, Mark Holzer^{3,4} & Francois Primeau⁵

NEWS & VIEWS RESEARCH

CLIMATE SCIENCE

Ocean circulation drove increase in CO₂ uptake

The ocean's uptake of carbon dioxide increased during the 2000s. Models reveal that this was driven primarily by weak circulation in the upper ocean, solving a mystery of ocean science. SEE LETTER P.215

Physics drives changes?

LETTER

doi:10.1038/nature21068

Recent increase in oceanic carbon uptake driven by

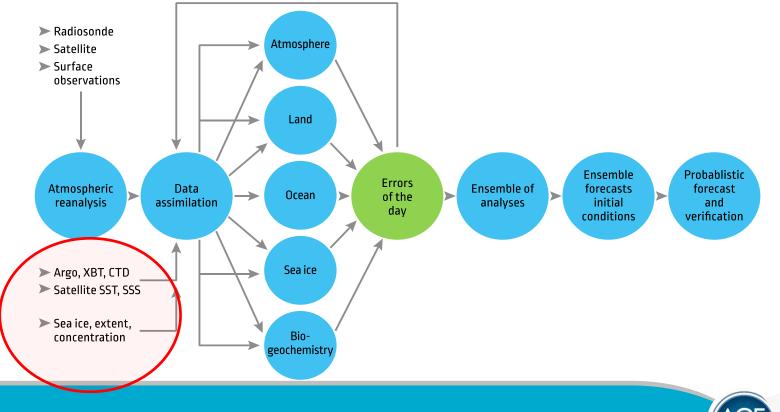
Tim DeVries¹

weak Is getting getting a better representation of the physics or ocean state the key to bringing models and observations together?

Ocean circulation drove increase in CO₂ uptake

The ocean's uptake of carbon dioxide increased during the 2000s. Models reveal that this was driven primarily by weak circulation in the upper ocean, solving a mystery of ocean science. SEE LETTER P.215

Goal:

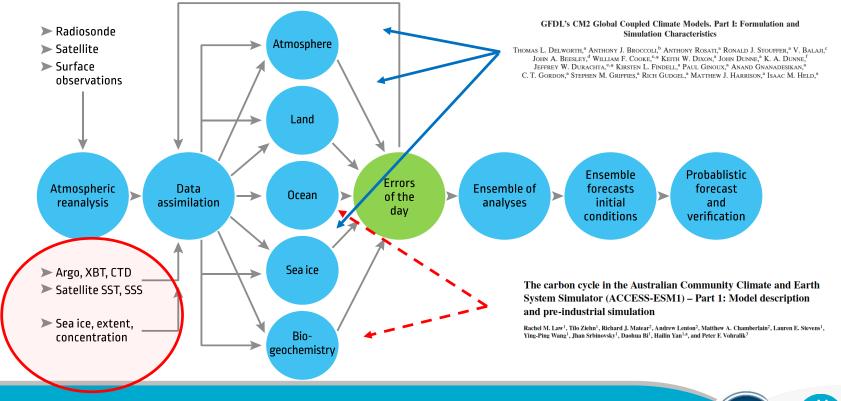

CLIMATE ANALYSIS FORECAST ENSEMBLE

sustem

CSIR

Simulate the response of the ocean carbon cycle in a framework dynamically consistent with the physical changes

Coupled Data Assimilation - > Forecasts



Goal:

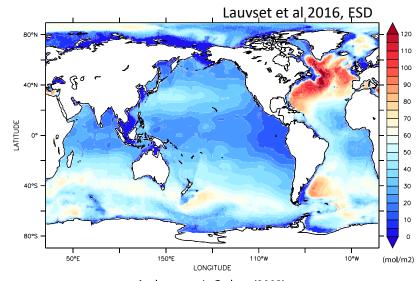
sustem

Simulate the response of the ocean carbon cycle in a framework dynamically consistent with the physical changes

Coupled Data Assimilation - > Forecasts

Simulations

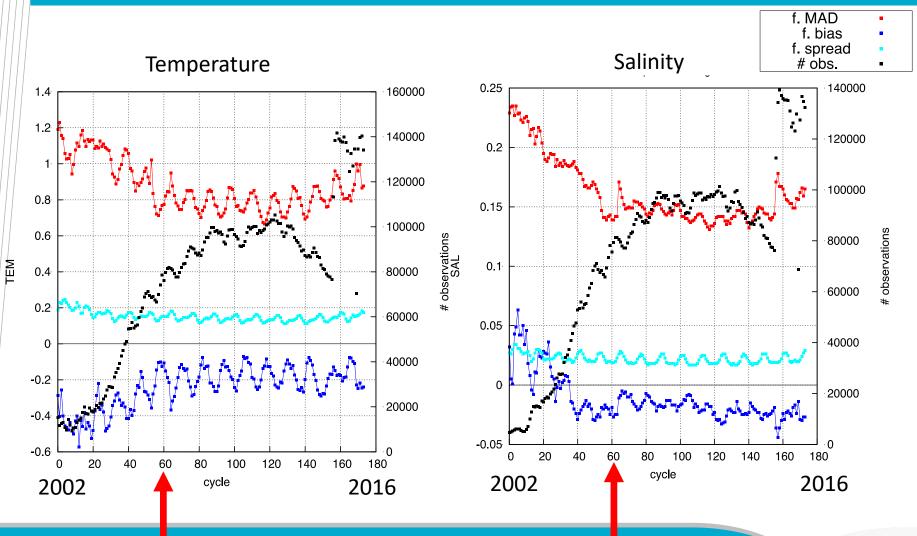
Physical Coupled Model spun up for 1000+ years -> used to build covariance matrices


Physical assimilation to remove model biases 2002 -2016

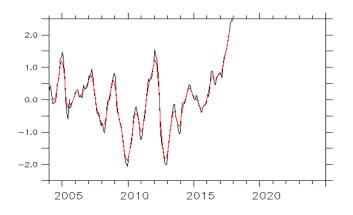
-> why 2002 - data!!!

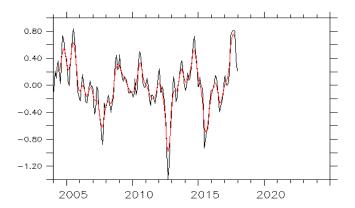
BGC initialized with GLODAP V2 in 2002, observed Chla

Driven with GCP atmospheric history between 2002 and 2016

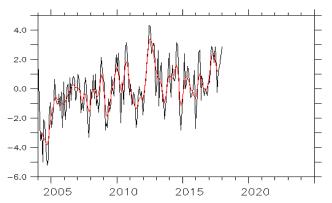

Focus on 2006 onwards ->

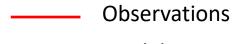
Anthopogenic Carbon (2002)


Physically Assessment- Total Ocean

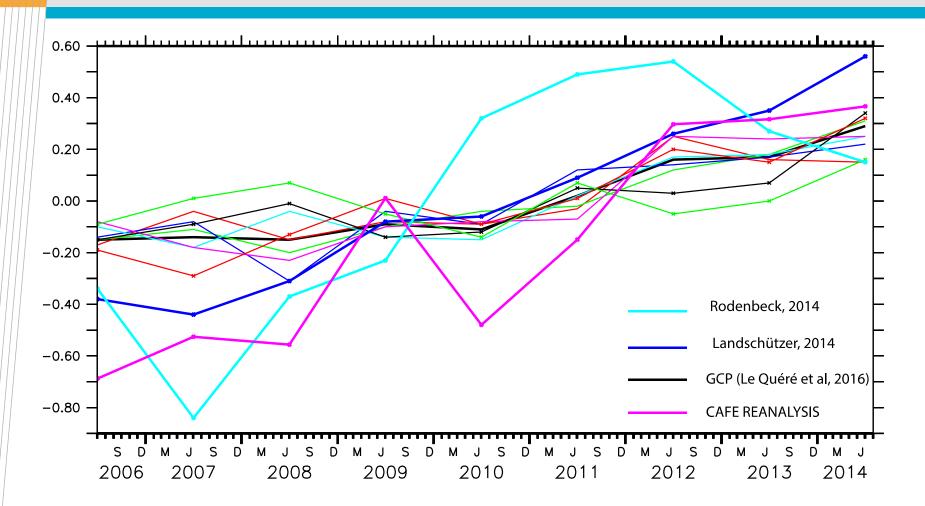


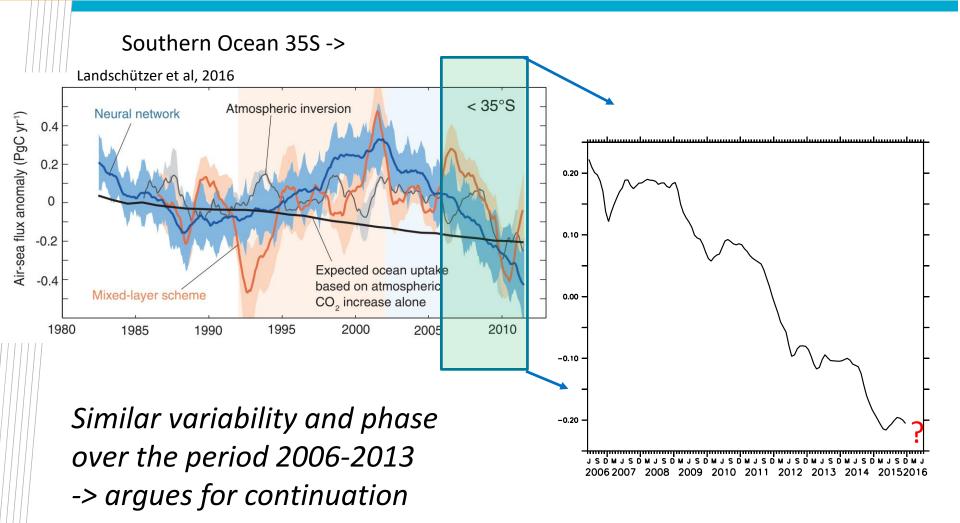
Physically Assessment – Major Climate Modes


Nino 3.4

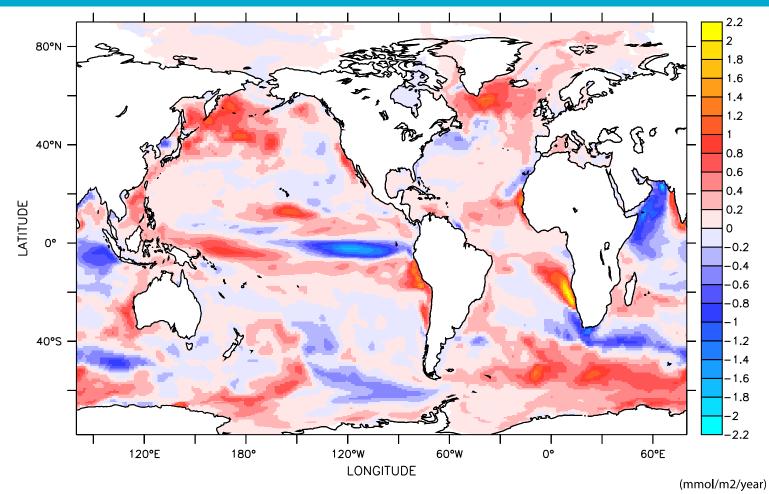

Indian Ocean Dipole

Southern Annular Mode


Major Climate Modes Well Reproduced



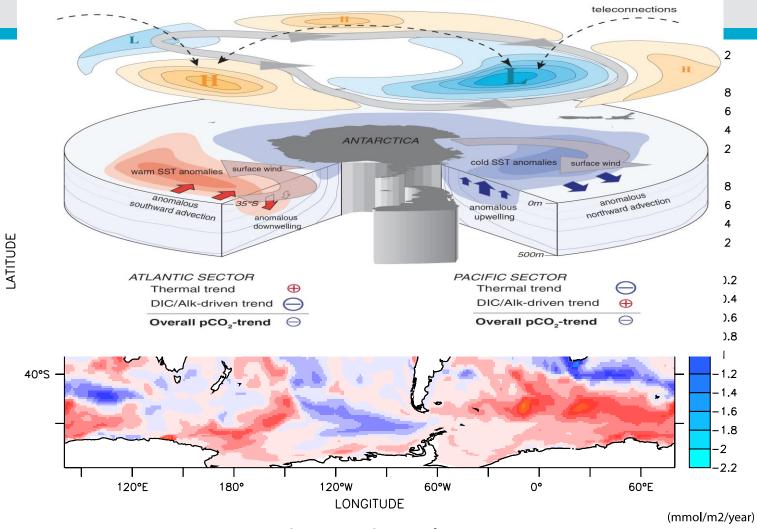
Global Responses Anomalies 2006-2014


Models: Buitenhuis et al ,2010, Aumont and Bopp, 2006, Doney et al 2009, Assman et al; 2010, Oke et al 2014, Hauck, 2013, Séférian et al, 2013

Results: Southern Ocean

ACE CSIRO

Results – Global Trends



Linear Trends in Carbon Fluxes (2006-2016)

Results – Global Trends

Landschützer et al, 2016

Linear Trends in Carbon Fluxes (2006-2016)

Early Stages.....

Improving the state estimation improves the carbon response and closes the gap between models and observations

Hopefully this will a product for the Global Carbon Budget Update

More work to do : SOCAT, SOCCOM, atmospheric observations and others

Allows to probe mechanisms and improve our representation of processes e.g. biological pump

Can't go back much more than a decade and requires computer resources

RECCAP -2 ? Exciting – seasonality improved

GOAL -> Forecasts, in the land and ocean

More information/future

Decadal Forecasting Project

Home C

me CAFE system

Observations and Processes

Processes Verification

Verification and Applications

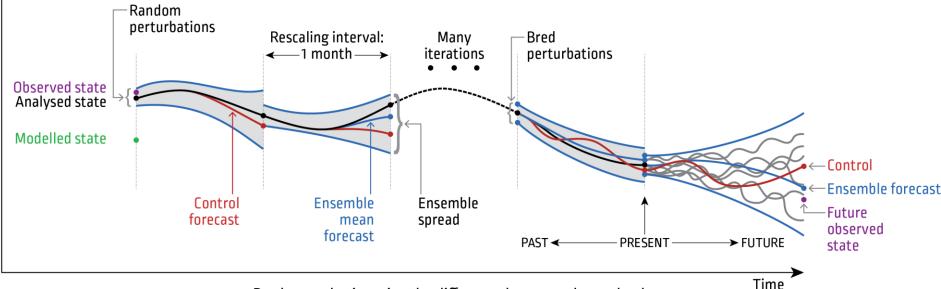
 $\overline{\mathbf{a}}$

More -

CSIRO

Welcome to the CSIRO Climate Analysis Forecast Ensemble System

Research and development to deliver multi-year climate forecasts for Australia.


Dive in

https://research.csiro.au/dfp/

Methodology

Random initial perturbations with prescribed RMS whose amplitude defines the rescaling.

Forecast evolution

Bred perturbations: i.e. the difference between the evolved perturbed forecasts and the control, renormalised via the norm defined by the RMS of the initial perturbations and the length of the rescaling interval.

