
APPENDIX

A. Proof of the Derivative of the Rotation Angle Function
Lemma 8, copied below, gives the derivative of the rotation angle function along an edge of a rotation cube Cr. Here we

present the full derivation of this result.

Lemma 8. (Derivative of the rotation angle function) Given a unit 3D bearing vector f and a rotation cube Cr centred at r0
with vertices {ri}i∈[1,8], then the derivative of the rotation angle function

Aij(λ) = arccos
(
(R−1r0 f) · (R−1rij(λ)

f)
)

(A.1)

with respect to λ, for an edge parametrisation of rij(λ) = ri + λ(rj − ri) with λ ∈ [0, 1], is given by

dAij
dλ

=
fᵀRr0R

ᵀ
rij(λ)

[f ]×

(
rij(λ)rij(λ)ᵀ − (Rrij(λ) − I)[rij(λ)]×

)(
ri − rj

)
‖rij(λ)‖2

√
1− (fᵀRr0R

ᵀ
rij(λ)

f)2
. (A.2)

Proof. Equation (A.2) can be derived as follows:
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where (A.6) uses Result 1 from [2] and the derivative follows from the differential.

Since the derivative is computationally expensive to calculate, we only evaluate it at the vertices. In addition, we only
require the sign of the result, which simplifies the equation. Corollary A.1 presents the relevant results.

Corollary A.1. (Sign of the derivative of the rotation angle function at the vertices) Given a unit 3D bearing vector f and a
rotation cube Cr centred at r0 with vertices {ri}i∈[1,8], then
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When (A.9) is positive and (A.10) is negative, the angle maximiser occurs on the edge and not at a vertex. An example of
the small fraction of cases where this occurs is shown in Fig. A.1. The figure also demonstrates the validity of the assumption
that the maximum always occurs on the cube skeleton (edges and vertices), not the faces. It can be observed that rotation
vectors on the cube faces are not projected beyond the convex hull of the projection of the edges for a given point.

1



(a) Rotation cube in angle-axis space with centre r0
(blue dot), projected angle maximiser r∗ (red dot),
origin (black circle) and unrotated 3D point p (black
dot). Cube edges and vertices are shown as thin
black lines and small black dots respectively.

(b) Rotation of 3D point p by angle-axis vectors on the surface of the cube with centre-rotated point
Rr0p (blue dot), angle maximiser Rr∗p (red dot) and origin (black circle). 40 equally-spaced lines
across each face are plotted in grey. All points and lines, other than the origin and lines to the origin,
lie on the surface of a sphere with radius ‖p‖. Cube edges and vertices are shown as thin black
lines and small black dots respectively. The weak rotation uncertainty angle ψw

r corresponds to the
aperture angle of the cone formed by the origin and the grey circle. Our rotation uncertainty angle ψr

corresponds to the aperture angle of the cone formed by the origin and the black circle.

Figure A.1. A random rotation cube and the rotation of a random 3D point by all angle-axis vectors on the surface of that cube. Observe
that the rotation vector that maximises the angle ∠(Rrp,Rr0p) lies on a cube edge. Also observe that rotation vectors on the face of the
cube (grey lines in the projection) do not rotate the point beyond the convex hull of the point rotated by the edges. Best viewed in colour.

B. Precomputing Angles on the Sphere
To reduce the time complexity of the bound calculations, the angle between the translated 3D points p − t0 and any

location on the unit sphere may be precomputed. Thus, for a fixed translation, the angle between any rotated bearing vector
and its rotationally-closest 3D point may be precomputed. This is the analogue in S2 of a distance transform in Rn, in that
the surface of the sphere is discretised and a look-up table constructed. It exploits the nested structure of the algorithm, since
many bounds for different rotations are calculated for a single translation. By using this precomputation, the max operations
in (42)–(45) are reduced from O(M) to O(1).

The look-up table was constructed by linearly projecting the sphere onto an enclosing cube whose faces were partitioned
with quad-trees. We subdivided the sphere into 98304 regions, such that the maximum angle between a point and its nearest
cell centre was 0.6◦. While the linear projection produces non-uniform cell sizes, it facilitates the rapid conversion from a
unit vector to a location in the data structure. Since this data structure relaxes θ by up to 0.6◦, it is not optimal with respect to
θ. However, it may be useful for problems with a large number of 3D pointsM . For the purposes of evaluating the algorithm,
this feature was not used in the experiments.



C. Time Complexity Analysis
Explicitly including the tolerance η in the bound formulae makes it possible to derive a bound on the worst-case search

tree depth and thereby obtain the time complexity of the algorithm. In terms of the size of the input, the GOPAC algorithm
is O(MN), or O(N) if angle precomputation is used, where M is the number of 3D points and N is the number of bearing
vectors. However, the notation conceals a very large constant. Including the constant factors that can be selected by the user
yieldsO(ρ3t0ζ

−3η−6MN), where ρt0 is the half space diagonal of the initial translation cuboids, that is one-quarter the space
diagonal of the translation domain, and ζ and η are small previously-defined constants set by the user.

Calculating the upper and lower bounds involves a summation overF and a maximisation overP , therefore the complexity
isO(MN). If angle precomputation is used, the maximisation becomes a constant-time lookup leading to a bound complexity
of O(N). However, it is as of yet unclear how the number of iterations (explored subcuboids) depends on the inputs. The
central finding is that branch-and-bound is exponential in the worst-case tree search depth D, but D is logarithmic in η−1.
Therefore the complexity of BB is polynomial in η−1, where η is the angle tolerance. Rotation and translation search will be
treated separately before being combined into an analysis of nested rotation and translation search.

Theorem C.1. (Rotation Search Depth and Complexity) Let ρr0 =
√

3δr0 =
√
3π/2 be the half space diagonal of the initial

rotation subcube Cr0 . Then

Dr = max
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log2

ρr0
η

⌉
, 0

}
(C.1)

is an upper bound on the worst-case rotation tree search depth for an uncertainty angle tolerance η and O(η−3) is the time
complexity of rotation BB search.

Proof. Rotation BB converges when
¯
νr > ν̄r. For any ψ′t(p, Ct) in (42) and (43),

¯
νr > ν̄r when ψ′r(f , Cr) 6 0 or equivalently

ψr(f , Cr) 6 η for all f ∈ F . Now,

ψr(f , Cr) = min

{
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∠(Rrf ,Rr0f), π

}
(C.2)

= min {∠(Rr∗f ,Rr0f), π} (C.3)

6 min
{√

3δr, π
}

(C.4)

6 ρr (C.5)

where (C.3) replaces the maximisation with the arg max rotation r∗, (C.4) follows from Lemma 2 and ρr is the half space
diagonal of the rotation subcube Cr. At rotation search tree depth Dr, the half space diagonal is given by

ρrDr
=

1

2
ρrDr−1

=
1

2Dr
ρr0 . (C.6)

Substituting into (C.5) gives
ψr(f , CrDr

) 6 ρrDr
= 2−Drρr0 . (C.7)

To find the worst-case rotation search tree depth, the constraint ψr(f , Cr) 6 η is applied:

ψr(f , CrDr
) 6 2−Drρr0 6 η. (C.8)

Taking the logarithm of both sides yields
Dr > log2

ρr0
η
. (C.9)

Equation (C.1) follows from the requirement thatDr be a non-negative integer. Now, rotation BB will have examined at most

Nr = 8(1 + 8 + 82 + · · ·+ 8Dr ) = 8
8Dr+1 − 1

8− 1
=

8

7

(
(2Dr+1)3 − 1

)
(C.10)

subcubes at search depth Dr, due to the octree structure. Finally, substituting (C.1) into (C.10) and simplifying using
Bachmann–Landau notation gives

Nr = O

((
ρr0
η

)3
)

= O
(
η−3

)
. (C.11)

The ρr0 term is removed because it is a constant (equal to
√

3π/2) that is not selected by the user.



The analysis of the worst-case search depth and time complexity for translation search proceeds in a similar manner.

Theorem C.2. (Translation Search Depth and Complexity) Let ρt0 be the half space diagonal of the initial translation
sub-cuboid Ct0 . Then

Dt = max

{⌈
log2

ρt0
ζ sin η

⌉
, 0

}
(C.12)

is an upper bound on the worst-case translation tree search depth for an uncertainty angle tolerance η and O(ρ3t0ζ
−3η−3) is

the time complexity of translation BB search.

Proof. Translation BB converges when
¯
νt > ν̄t. This condition is met when ψ′t(p, Ct) 6 0 or equivalently ψt(p, Ct) 6 η for

all p ∈ P . This can be seen by inspecting (42) and (43) and noting that at convergence the upper and lower rotation bounds
will be equal. Now for ‖p− t0‖ > ρt, which is guaranteed for ρt 6 ζ,

ψt(p, Ct) = max
t∈Vt

∠(p− t,p− t0) (C.13)
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t
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(
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where (C.14) follows from maximising the angle over the circumsphere S2
t of the cuboid instead of the vertices, (C.15) is

shown in [1] with ρt being the half space diagonal of the translation subcuboid Ct, and (C.16) follows from the restriction of
the translation domain such that ‖p− t‖ > ζ. At translation search tree depth Dt, the half space diagonal of CtDt

is given by
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=

1

2
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2Dt
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Substituting into (C.16) gives

ψt(p, CtDt
) 6 arcsin

(
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ζ

)
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(
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)
. (C.18)

To find the worst-case translation search tree depth, the constraint ψt(p, Ct) 6 η is applied, resulting in

ψt(p, CtDt
) 6 arcsin

(
ρt0
ζ2Dt

)
6 η. (C.19)

Taking the sine and logarithm of both sides yields

Dt > log2

ρt0
ζ sin η

. (C.20)

Equation (C.12) follows from the requirement that Dt be a non-negative integer. Now, translation BB will have examined at
most

Nt = 8(1 + 8 + 82 + · · ·+ 8Dt) = 8
8Dt+1 − 1

8− 1
=

8

7

(
(2Dt+1)3 − 1

)
(C.21)

subcuboids at search depth Dt. Finally, substituting (C.12) into (C.21) and simplifying using Bachmann–Landau notation
and the Taylor expansion of sin η gives

Nt = O
(
ρ3t0ζ

−3(sin η)−3
)

= O
(
ρ3t0ζ

−3η−3
)
. (C.22)

In the nested BB search structure detailed at the beginning of Section 5, for every translation subcuboid examined, rotation
BB search is run once to find the lower translation bound and again to find the upper translation bound. Thus the number of
rotation subcubes examined is at worst equal to 2NtNr. For each rotation subcube, both the upper and lower bounds must be
calculated, each with a time complexity ofO(MN). Thus the total number of bound calculations is at worst equal to 4NtNr.
Combining the time complexity analyses (C.11) and (C.22) with the time complexity of the bound calculations leads to the
following corollary.
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(a) Truncated GOPAC
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(b) Standard GOPAC
Figure D.1. A comparison of “truncated GOPAC” and standard GOPAC. Mean success rates and median runtimes with respect to the 2D
outlier fractions for the random points dataset, for 50 Monte Carlo simulations per parameter value with the torus prior. The 3D outlier
fraction was fixed at 0.

Corollary C.1. (Time Complexity of GOPAC) Let ρt0 be the half space diagonal of the initial translation subcuboid Ct0 , ζ
be the translation restriction parameter, η be the uncertainty angle tolerance, M be the number of 3D points and N be the
number of bearing vectors, then the time complexity of the GOPAC algorithm is given by

O
(
ρ3t0ζ

−3η−6MN
)
. (C.23)

It is important to observe that experimental evaluation of runtime is more revealing for BB algorithms than time complexity
analysis. The main reason to use BB is that it can prune large regions of the search space, reducing the size of the problem.
This is not reflected in the complexity analysis.

D. Additional Experiments and Results
D.1. Synthetic Data Experiments: Early Termination

The early termination strategy, referred to in the paper as “truncated GOPAC” or bGPc, is investigated further in this
section. Recall that since the majority of the runtime of the algorithm is spent decreasing the upper bound, an early termination
strategy will often attain the global optimum, although it will not be able to guarantee optimality. We repeated the 2D outlier
experiments for the torus prior with random points to show the performance of our algorithm when it is terminated after 30s.
At termination, the algorithm returns the best-so-far cardinality and camera pose, as well as a flag to indicate that the result
is not guaranteed to be optimal. The results are shown in Figure D.1. It is clear that the method still performs very well even
when terminated early, albeit without an optimality guarantee. For some applications, it may be worth sacrificing optimality
for the significant decrease in runtime. For comparison, we also plot the results from the paper without truncation.

D.2. Real Data Experiments

In this section, we expand the quantitative and qualitative results for the experiments reported in Section 6.2. In Ta-
bles D.1–D.4, Tables 1–4 have been rewritten with a tighter success rate (starred), halving the relative translation error
criterion to 5%. Good performance is still achieved with this much stricter criterion, indicating that the camera poses are
found to a relatively high precision. In Figure D.2, Figure 17 has been re-plotted at a larger scale. In Figures D.3, D.4
and D.5, we plot the remaining 10 images with the results obtained by GOPAC and RANSAC. It can be seen that there are
two failure cases, with respect to camera pose (both remain optimal with respect to the number of inliers). In both cases,
some of the extracted 2D features lie on non-building pixels, due to an error in the segmentation, which can be thought of as
particularly undesirable 2D outliers. This is likely to have contributed to the algorithm finding the incorrect pose.



Table D.1. Camera pose results for serial and parallel (CPU and GPU) implementations of GOPAC and RANSAC for scene 1 of the
Data61/2D3D dataset. The median translation error, rotation error and runtime and the mean inlier recall and success rates are reported.
The starred success rate has double the translation precision requirements of the unstarred rate.

Implementation Serial Parallel: CPU Parallel: GPU RANSAC

Angular tolerance η 0 10−3 0 10−3 0 10−3 –

Translation error (m) 2.30 2.22 2.30 2.29 2.22 2.22 28.5

Rotation error (◦) 2.18 2.08 2.08 2.09 2.09 2.09 179

Recall (inliers) 1.00 1.00 1.00 1.00 1.00 1.00 0.81

Success rate (inliers) 1.00 1.00 1.00 1.00 1.00 1.00 0.00

Success rate (pose) 0.82 0.82 0.82 0.82 0.82 0.82 0.09

Success rate* (pose) 0.73 0.73 0.73 0.73 0.73 0.73 0.09

Runtime (s) 614 352 477 323 8 6 471

Table D.2. Camera pose results for the quad-GPU implementation of GOPAC for the Data61/2D3D dataset. The median translation error,
rotation error and runtime and the mean inlier recall and success rates are reported. The starred success rate has double the translation
precision requirements of the unstarred rate.

Scene 1 2 3 4 5 6 7 8 9 10

Number of 3D points 514 572 721 314 259 234 245 439 819 899

Translation error (m) 1.11 0.97 1.06 1.57 1.12 1.12 0.34 1.50 0.87 0.83

Rotation error (◦) 0.70 1.45 1.51 1.36 1.15 0.84 0.59 1.40 0.83 1.45

Recall (inliers) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Success rate (inliers) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Success rate (pose) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.91 1.00 1.00

Success rate* (pose) 1.00 1.00 0.82 1.00 1.00 1.00 1.00 0.91 1.00 1.00

Runtime (s) 15 27 11 7 11 25 7 20 25 24

Table D.3. Camera pose results for the quad-GPU implementation of GOPAC (GP) and RANSAC (RS) for area 3 of the Stanford 2D-3D-S
dataset. The median translation error, rotation error and runtime and the mean inlier recall and success rates are reported. The starred
success rate has double the translation precision requirements of the unstarred rate.

Room type lounge office other

Mean point-set size 534 299 365

Method GP RS GP RS GP RS

Translation error (m) 0.07 0.68 0.18 1.85 0.13 1.87

Rotation error (◦) 1.74 13.0 3.40 89.7 2.95 37.5

Recall (inliers) 1.00 0.62 1.00 0.63 1.00 0.59

Success rate (inliers) 1.00 0.00 1.00 0.00 1.00 0.00

Success rate (pose) 1.00 0.20 0.80 0.10 1.00 0.14

Success rate* (pose) 1.00 0.10 0.80 0.10 1.00 0.00

Runtime (s) 12 121 40 121 35 121
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Table D.4. Camera pose results for the quad-GPU implementation of GOPAC (GP) and RANSAC (RS) for the edge-features A and B
datasets. The median translation error, rotation error and runtime and the mean inlier recall and success rates are reported. The starred
success rate has double the translation precision requirements of the unstarred rate.

Dataset A B

Method GP RS GP RS

Translation error (m) 0.13 6.11 0.10 5.77

Rotation error (◦) 2.90 141 1.88 129

Recall (inliers) 1.00 0.69 1.00 0.56

Success rate (inliers) 1.00 0.00 1.00 0.00

Success rate (pose) 0.68 0.00 0.99 0.00

Success rate* (pose) 0.56 0.00 0.86 0.00

Runtime (s) 44 120 52 120

(a) 3D point-set (grey and green), 3D features (black dots) and ground-truth (black), RANSAC (red) and our (blue) camera poses. The ground-truth and our
camera poses coincide, whereas the RANSAC pose has a translation offset and a 180◦ rotation offset. Best viewed in colour.

(b) Image 10. Panoramic photograph and extracted 2D features (top), building points projected onto the image using the RANSAC camera pose (middle)
and building points projected using our camera pose (bottom).
Figure D.2. Qualitative camera pose results for scene 1 of the Data61/2D3D dataset, showing the pose of the camera when capturing image
10 and the projection of 3D building points onto image 10.
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(a) Image 1: 2D features (top), building points projected using RANSAC camera pose (middle) and building points projected using our pose (bottom).

(b) Image 2: 2D features (top), building points projected using RANSAC camera pose (middle) and building points projected using our pose (bottom).

(c) Image 3: 2D features (top), building points projected using RANSAC camera pose (middle) and building points projected using our pose (bottom).

(d) Image 4: 2D features (top), building points projected using RANSAC camera pose (middle) and building points projected using our pose (bottom).
Figure D.3. Qualitative results for 4 test images. Our method (GOPAC) found the correct camera pose for every image.



(a) Image 5: 2D features (top), building points projected using RANSAC camera pose (middle) and building points projected using our pose (bottom).

(b) Image 6: 2D features (top), building points projected using RANSAC camera pose (middle) and building points projected using our pose (bottom).

(c) Image 7: 2D features (top), building points projected using RANSAC camera pose (middle) and building points projected using our pose (bottom).
Figure D.4. Qualitative results for 3 test images. Image 6 was a failure case for our method, with respect to camera pose, although it still
found the optimal number of inliers. It can be seen that three 2D features were extracted at non-building locations, due to an error in the
segmentation. This may have contributed to the algorithm finding an incorrect pose.



(a) Image 8: 2D features (top), building points projected using RANSAC camera pose (middle) and building points projected using our pose (bottom).

(b) Image 9: 2D features (top), building points projected using RANSAC camera pose (middle) and building points projected using our pose (bottom).

(c) Image 11: 2D features (top), building points projected using RANSAC camera pose (middle) and building points projected using our pose (bottom).
Figure D.5. Qualitative results for 3 test images. Image 9 was a failure case for our method, with respect to camera pose, although it still
found the optimal number of inliers. Like the previous failure case, 2D features were extracted at non-building locations, due to an error in
the segmentation. This may have contributed to the algorithm finding an incorrect pose.


