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Camera Pose and Correspondence Estimation
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Abstract—Estimating the 6-DoF pose of a camera from a single image relative to a 3D point-set is an important task for many
computer vision applications. Perspective-n-point solvers are routinely used for camera pose estimation, but are contingent on the
provision of good quality 2D–3D correspondences. However, finding cross-modality correspondences between 2D image points and a
3D point-set is non-trivial, particularly when only geometric information is known. Existing approaches to the simultaneous pose and
correspondence problem use local optimisation, and are therefore unlikely to find the optimal solution without a good pose initialisation,
or introduce restrictive assumptions. Since a large proportion of outliers and many local optima are common for this problem, we
instead propose a robust and globally-optimal inlier set maximisation approach that jointly estimates the optimal camera pose and
correspondences. Our approach employs branch-and-bound to search the 6D space of camera poses, guaranteeing global optimality
without requiring a pose prior. The geometry of SE(3) is used to find novel upper and lower bounds on the number of inliers and local
optimisation is integrated to accelerate convergence. The algorithm outperforms existing approaches on challenging synthetic and real
datasets, reliably finding the global optimum, with a GPU implementation greatly reducing runtime.

Index Terms—camera pose estimation, registration, camera calibration, imaging geometry, global optimisation, branch-and-bound
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1 INTRODUCTION

E STIMATING the pose of a calibrated camera given a set
of 2D image points in the camera frame and a set of

3D points in the world frame, as shown in Fig. 1, is a
fundamental part of the general 2D–3D registration problem
of aligning an image with a 3D scene or model. The ability
to find the pose of a camera and map visual information
onto a 3D model is useful for many tasks, including local-
isation and tracking [1], [2], augmented reality [3], motion
segmentation [4] and object recognition [5].

When correspondences are known, this becomes the
Perspective-n-Point (PnP) problem for which many solu-
tions exist [6], [7], [8], [9]. However, while hypothesise-
and-test frameworks such as RANSAC [1] can mitigate the
sensitivity of PnP solvers to outliers in the correspondence
set, few approaches are able to handle the case where 2D–3D
correspondences are not known in advance. There are many
circumstances under which correspondences may be diffi-
cult to ascertain, including the general case of aligning an
image with a textureless 3D point-set or CAD model. While
feature extraction techniques provide a relatively robust and
reproducible way to detect interest points such as edges
or corners within each modality, finding correspondences
across the two modalities is much more challenging. Even
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when the point-set has sufficient visual information associ-
ated with it, such as colour, reflectance or SIFT features [10],
repetitive elements, occlusions and perspective distortion
make the correspondence problem non-trivial. Moreover,
appearance and thus visual features may change signif-
icantly between viewpoints, lighting conditions, weather
and seasons, whereas scene geometry is often less affected.
When relocalising a camera in a previously mapped envi-
ronment or bootstrapping a tracking algorithm, geometry
can be more reliable than appearance. Thus there is a need
for methods that solve for both pose and correspondences.

Local optimisation algorithms for efficiently solving this
joint problem have been proposed [11], [12]. However, they
require a pose prior, search only for local optima and do
not provide an optimality guarantee, yielding erroneous
pose estimates without a reliable means of detecting failure.
Global optimisation approaches for the correspondence-
free problem, including hypothesise-and-test frameworks
[1], [13], are not reliant on pose priors but quickly become
computationally intractable as the number of points and
outliers increase and do not provide an optimality guar-
antee. More recently, a global and ε-suboptimal method
has been proposed [14], which uses a branch-and-bound
approach to find a camera pose whose trimmed geometric
error is within ε of the global minimum.

This work is the first to propose a globally-optimal
inlier set cardinality maximisation solution to the simulta-
neous pose and correspondence problem. Named GOPAC,
the algorithm is inherently robust to outliers and removes
the assumptions that correspondences or training data are
available, solving the most general form of the problem
with geometry alone. The approach employs a branch-and-
bound framework to guarantee global optimality without
requiring a pose prior, ensuring that it is not susceptible
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Fig. 1. Estimating the 6-DoF absolute pose of a calibrated camera
from a single image, relative to a 3D point-set, with no 2D–3D corre-
spondences. The GOPAC algorithm solves this most general form of
the absolute camera pose problem, jointly estimating the position and
orientation of the camera and the 2D–3D correspondences, using a
globally-optimal branch-and-bound approach with tight novel bounds on
the cardinality of the inlier set.

(a) 10 random points (b) 30 random points

Fig. 2. Inlier set cardinality optima for a slice of the rotation domain
passing through the optimal rotation (marked in black) and the Z-axis, for
two alignment problems. The colour indicates the maximum number of
inliers at each rotation in the domain with lighter shades corresponding
to greater cardinalities. Many local optima are evident, and are even
more pervasive when solving for rotation and translation jointly, hence
local optimisation in the neighbourhood of a pose prior is a bad strategy.

to local optima, such as those shown in Fig. 2. The space
of rigid motions, the Special Euclidean group SE(3), is
parametrised in a way that facilitates branching and allows
tight and novel bounds on the objective function to be
derived for each branch. In addition, local optimisation
methods are tightly integrated to accelerate convergence
without voiding the optimality guarantee. A multi-threaded
implementation on the GPU provides an additional means
for greatly accelerating the algorithm. A preliminary version
of this work was presented as a conference paper [15].

There are several advantages to using a cardinality max-
imisation approach. Firstly, it allows an exact optimiser
to be found, unlike ε-suboptimal approaches [14]. More
critically, cardinality maximisation is inherently robust to
outliers without smoothing the function surface and thereby
changing the location of the global optimum. In contrast,
robustness conferred by trimming or robust loss functions
can smooth and distort the surface of the original objective
function, reducing the prominence of the global optimum
and moving its location. Moreover, trimming requires the
user to specify the inlier fraction, which can rarely be known
in advance. If it is over- or under-estimated, the optimum
may no longer occur at the correct pose. Finally, cardinality
maximisation operates directly on discrete sensor data with-
out making assumptions about the underlying structure. As
a result, it can be applied in situations where the structure
is not obvious from the data, such as for sparse point-sets.

2 RELATED WORK

A large body of work exists for estimating the pose of a cal-
ibrated camera when 2D–3D correspondences are available.
When the correspondences between a set of noisy image
points and a 3D point-set are known perfectly, Perspective-
n-Point (PnP) solvers [6], [7], [8], [9], [16] can be applied. The
minimal case [6], [7] requires three 2D–3D correspondences,
although greater robustness to noise can be achieved with
more correspondences [8], [9], including optimality with
respect to the reprojection error [16].

When outliers are present in the correspondence set,
the RANSAC framework [1], [17] or robust global optimi-
sation [18], [19], [20], [21] can be used to find the inlier
set. RANSAC [1] randomly samples the correspondences,
computes a pose hypothesis with a minimal PnP algorithm,
and verifies the result by measuring the number of inliers,
but does not provide any guarantee of optimality. Enqvist et
al. [18] proposed a globally-optimal branch-and-bound al-
gorithm that extended the L∞ norm to handle outliers, but
were unable to guarantee the convergence of the bounds.
More recently, Svärm et al. [21] proposed a polynomial-time
inlier maximisation approach to absolute camera pose esti-
mation for a large-scale model, assuming that the vertical di-
rection and height of the camera was known. Alternatively,
outlier removal schemes can make quasiconvex problems
more tractable [22], [23]. However, the absolute calibrated
camera pose problem is not quasiconvex and many of these
approaches discard inliers alongside the outliers. It should
be observed that some of these approaches [1], [18] can
be extended to the correspondence-free case by providing
the algorithm with all possible permutations of the corre-
spondence set. However, this leads to a hard combinatorial
problem that quickly becomes infeasible.

Large-scale camera localisation, with its significant de-
mands on outlier robustness and computational efficiency,
has received a lot of attention recently [20], [21], [24], [25],
[26], [27]. These methods develop sophisticated matching
strategies to avoid outlier correspondences at the outset and
may also incorporate RANSAC, global optimisation and
outlier removal stages in their sparse feature pipeline. A
recent state-of-the-art approach is Active Search [27], which
prioritises those SIFT features that are more likely to yield
inlier correspondences, and achieves high camera pose accu-
racy in feature-rich outdoor environments. However, these
methods are only feasible when 2D–3D correspondences can
be found. For this reason, they are often only practical for
3D models that have been constructed using stereopsis or
Structure-from-Motion (SfM), associating an image feature
with each 3D point and thus simplifying the correspondence
problem. Generic point-sets do not have this property; a
point may lie anywhere on the underlying surfaces in a laser
scan, not just where strong image gradients occur.

When correspondences are unknown, the problem be-
comes more challenging. For the 2D–2D case, problems such
as correspondence-free SfM [28], [29] and relative camera
pose [30], [31] have been addressed. For the 2D–3D case,
there has been a parallel investigation into geometric match-
ing and correspondence-free absolute camera pose prob-
lems. Some approaches sidestep the full 2D–3D problem
by utilising multiple cameras or a collection of images [32]
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to first obtain 3D positional information from the 2D data,
which is then registered against a 3D point-set.

The more general problem however is pose estimation
from a single image, for which several approaches employ
local optimisation. David et al. [11] proposed the SoftPOSIT
algorithm, which alternates correspondence assignment us-
ing SoftAssign [33] with an iterative pose update algorithm.
However, local methods require a pose prior and may
only find a locally-optimal solution within the convergence
basin of that prior. To alleviate this, these methods are
frequently used within a global optimisation framework,
such as random-start local search [11]. A more sophisticated
approach was used in the BlindPnP algorithm [12], which
represented the pose prior as a Gaussian mixture model
from which a Kalman filter was initialised for matching.
However, these approaches are still susceptible to local op-
tima, require a pose prior and cannot guarantee optimality.

Grimson [13] removed the need for a pose prior by
using a hypothesize-and-test approach for the simultaneous
pose and correspondences problem, but the method was not
optimal and quickly became intractable as the number of
points increased. Pose clustering approaches [34], [35] use a
similar technique, but generate all pose hypotheses before
identifying dense clusters. Due to the highly combinato-
rial nature of searching the set of 2D–3D correspondences,
these methods are limited to small input sizes. More recent
approaches use machine learning techniques including re-
gression forests and convolutional neural networks to learn
2D–3D correspondences from the data and thereby regress
pose [36], [37], [38], [39]. These global optimisation methods
require a large training set of images and poses and do not
estimate the pose with respect to an explicit 3D model.

In contrast, globally-optimal methods find a camera pose
that is guaranteed to be an optimiser of an objective function
without requiring a pose prior, but tractability remains a
challenge. A Branch-and-Bound (BB) [40] strategy may be
applied in these cases, for which bounds need to be derived.
For example, Breuel [41] used BB for 2D–2D registration
problems, Hartley and Kahl [30] for optimal relative pose
estimation by bounding the group of 3D rotations, Li and
Hartley [42] for rotation-only 3D–3D registration, Olsson et
al. [43] for 3D–3D registration with known correspondences,
Yang et al. [44] for full 3D–3D registration and Campbell
and Petersson [45] for robust 3D–3D registration. While not
optimal, Jurie [46] used probabilistic BB for 2D–3D align-
ment with a linear approximation of perspective projection.
More recently, Brown et al. [14] proposed a global and ε-
suboptimal method using BB. It found a camera pose whose
trimmed geometric error is within ε of the global minimum.
While not susceptible to local minima, it requires the inlier
fraction to be specified, which can rarely be known in
advance, in order to trim outliers.

Our work is the first globally-optimal inlier set cardi-
nality maximisation solution to the simultaneous pose and
correspondence problem. It removes the assumptions that
correspondences, training data or pose priors are available
and is guaranteed to find the exact optimum of a robust
objective function. The paper is organised as follows: we
introduce the problem formulation in Section 3, develop a
branch-and-bound strategy in Section 4, propose an algo-
rithm in Section 5 and evaluate its performance in Section 6.
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Fig. 3. The inlier set for camera pose estimation with cardinality ν,
defined as the set of those bearing vectors that are less than θ from
at least one 3D point with respect to the angular distance metric.

3 INLIER SET CARDINALITY MAXIMISATION

The cardinality of the inlier set is a robust objective function
that counts the number of inliers given a specific transfor-
mation of the data. It can operate directly on raw data repre-
sentations without making assumptions about the structure
of the data and is inherently robust to outliers without
smoothing the objective function and thereby distorting or
concealing the location of the global optimum.

For camera pose estimation, the inlier set consists of
those bearing vectors that are within θ of any point in the
point-set with respect to the angular distance metric, as
shown in Fig. 3. Let p ∈ R3 be a 3D point and f ∈ R3

be a bearing vector with unit norm, corresponding to a 2D
point imaged by a calibrated camera. That is, f ∝ K−1x̂
where K is the matrix of intrinsic camera parameters and
x̂ is the homogeneous image point. Given a set of points
P = {pi}Mi=1 and bearing vectors F = {fi}Ni=1 and an inlier
threshold θ, the objective is to find a rotation R ∈ SO(3)
and translation t ∈ R3 that maximises the cardinality ν of
the inlier set SI

ν∗ = max
R, t
|SI | (1)

SI = {f ∈ F | ∃p ∈ P : ∠(f ,R(p− t)) 6 θ} (2)

where ∠(·, ·) denotes the angular distance between vectors.
An equivalent formulation is given by

ν∗ = max
R, t

f(R, t) (3)

ν = f(R, t) =
∑
f∈F

max
p∈P

1
(
θ − ∠(f ,R(p− t))

)
(4)

where 1(x) , 1R≥0
(x) is the indicator function that has the

value 1 for all elements of the non-negative real numbers
and the value 0 otherwise. All correspondences (fi,pj) with
respect to θ can be found from the optimal transformation
parameters R∗ and t∗ by identifying all pairs for which
∠(fi,R

∗(pj − t∗)) 6 θ. We use the cardinality of the set of
bearing vector inliers, not 3D point inliers, since this avoids
the degenerate case where all 3D points become inliers
when the camera is sufficiently distant, as shown in Fig. 4.
Enforcing one-to-one correspondences also avoids these
configurations, but introduces significant computation.
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Draft Copy – 13 September 2017

(a) Correct pose

Draft Copy – 13 September 2017

(b) Degenerate pose

Fig. 4. Maximising the cardinality of the set of bearing vector inliers
instead of 3D point inliers avoids degenerate poses where all 3D points
become inliers when the camera is sufficiently far from them.
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(b) Translation Domain Ωt

Fig. 5. Parametrisation of SE(3). (a) The rotation space SO(3) is
parametrised by angle-axis 3-vectors in a solid radius-π ball. (b) The
translation space R3 is parametrised by 3-vectors bounded by a cuboid
with half-widths [τx, τy , τz ]. The domain is branched into sub-cuboids as
shown using nested octree data structures.

4 BRANCH-AND-BOUND

To solve the highly non-convex cardinality maximisation
problem (1), the global optimisation technique of Branch-
and-Bound (BB) [40] may be applied. To do so, a suitable
means of parametrising and branching (partitioning) the
function domain must be found, as well as an efficient way
to calculate upper and lower bounds of the function for
each branch, which converge as the branch size tends to
zero. While the bounds need to be computationally effi-
cient to calculate, the time and memory efficiency of the
algorithm also depend on how tight the bounds are, since
tighter bounds reduce the search space quicker by allowing
suboptimal branches to be pruned. These two factors are
generally in opposition and must be optimised together.

4.1 Parametrising and Branching the Domain

To find a globally-optimal solution, the cardinality of the
inlier set SI must be optimised over the domain of 3D mo-
tions, that is, the group SE(3) = SO(3)×R3. However, the
space of these transformations is unbounded. Therefore, to
apply the BB paradigm, the space of translations is restricted
to be within the bounded set Ωt. For a suitably large set, it is
reasonable to assume that the camera centre lies within Ωt.
That is, the camera can be assumed to be a finite distance
from the 3D points. The domains are shown in Fig. 5.

Rotation space SO(3) is minimally parametrised with
angle-axis 3-vectors r with rotation angle ‖r‖ and rotation
axis r̂ = r/‖r‖. The notation Rr ∈ SO(3) is used to denote
the rotation matrix obtained from the matrix exponential
map of the skew-symmetric matrix [r]× induced by r. The
Rodrigues’ rotation formula

Rr = exp([r]×) = I+ (sin ‖r‖)[r̂]× + (1− cos ‖r‖)[r̂]2× (5)

can be used to efficiently calculate this mapping. Using
this parametrisation, the space of all 3D rotations can be
represented as a solid ball of radius π in R3. The mapping
is one-to-one on the interior of the π-ball and two-to-one
on the surface. For ease of manipulation, the 3D cube
circumscribing the π-ball is used as the rotation domain Ωr ,
as in [42].

Translation space R3 is parametrised with 3-vectors in
a bounded domain chosen as the cuboid Ω′t containing the
bounding box of P . If the camera is known to be inside
the 3D scene, Ω′t can be set to the bounding box, otherwise
it is set to an expansion of the bounding box. Semantic
information, such as classifying an image as ‘indoors,’ may
also be used to restrict Ω′t. To avoid the non-physical case
where a 3D point is located within a small value ζ of the
camera centre, the translation domain is restricted such that
Ωt = Ω′t ∩ {t ∈ R3 | ‖p− t‖ > ζ,∀p ∈ P}.

In this implementation of BB, the domain is branched
into sub-cuboids using nested octree data structures. They
are defined as

C(x0, δ) = {x ∈ R3 | eᵀi (x−x0) ∈ [−δi, δi], i = 1, 2, 3} (6)

where δ is the vector of half side-lengths of the cuboid and
ei is the ith standard basis vector. To simplify the notation,
we use Cr = C(r0, δr) and Ct = C(t0, δt) for the rotation
and translation sub-cuboids respectively.

4.2 Bounding the Branches
The success of a branch-and-bound algorithm is predicated
on the quality of its bounds. For inlier set maximisation,
the objective function (4) needs to be bounded within any
sub-domain. Some preparatory material is now presented.

4.2.1 Uncertainty Angle Bounds
If a branch contained a single rotation or translation, then
the new position of a point transformed by that branch
would be known with certainty. However, each branch
contains a contiguous set of (infinitely) many different ro-
tations or translations. Transforming a point by one of these
sets induces a transformation region, shown in Fig. 6. The
transformation region lies on a sphere for rotations and in
R3 for translations.

To bound the objective function on a branch, a bound
on the maximum or worst-case angular deviation needs to
be found, with respect to some arbitrary reference trans-
formation in the branch. For simplicity, the reference trans-
formation is the rotation or translation associated with the
centroid of the cuboidal branch. In this work, the maximum
deviation is termed the uncertainty angle because it expresses
how far from the reference transformation the optimal in-
branch transformation might be. The uncertainty angles
induced by a rotation and translation sub-cuboid on a point
p are shown in Fig. 6. The transformed point lies within a
cone with aperture angle equal to the sum of the rotation
and translation uncertainty angles.

A weak bound on the uncertainty angle due to rotation
was derived in [30] using a proof, summarised in Lemma 1,
that the angle between two rotated vectors is less than
the Euclidean distance between their rotations’ angle-axis
representations in R3.
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Fig. 6. Uncertainty angles induced by rotation and translation sub-
cuboids. (a) Rotation uncertainty angle ψr for Cr . The optimal rotation
of p may be anywhere within the umbrella-shaped region on the sphere,
which is entirely contained by the cone defined by Rr0p and ψr .
(b) Translation uncertainty angle ψt for Ct. The optimal translation of p
may be anywhere within the cuboidal region, which is entirely contained
by the cone defined by p− t0 and ψt.

Lemma 1. For an arbitrary vector p and two rotations,
represented as Rr1 and Rr2 in matrix form and r1 and
r2 in angle-axis form,

∠(Rr1p, Rr2p) 6 ‖r1 − r2‖. (7)

From this, a weak bound on the maximum angle between a
vector p rotated by r0 and p rotated by r ∈ Cr for a cube of
rotation angle-axis vectors Cr can be found, as in [30].
Lemma 2. (Weak rotation uncertainty angle bound) Given a

3D point p and a rotation cube Cr of half side-length δr
centred at r0, then ∀r ∈ Cr,

∠(Rrp,Rr0p) 6 min{
√

3δr, π} , ψwr (Cr). (8)

Proof: Inequality (8) can be derived as follows:

∠(Rrp,Rr0p) 6 min{‖r− r0‖, π} (9)

6 min{
√

3δr, π} (10)

where (9) follows from Lemma 1 and the maximum possible
angle between points on a sphere and (10) follows from
max ‖r−r0‖ =

√
3δr, the half space diagonal of the rotation

cube, for r ∈ Cr .
However, a tighter bound can be found by observing

that a point rotated about an axis parallel to the point vector
is not displaced. To exploit this, we maximise the angle
∠(Rrp,Rr0p) over the surface Sr of the cube Cr as follows.
Lemma 3. (Rotation uncertainty angle bound) Given a 3D

point p and a rotation cube Cr centred at r0 with surface
Sr , then ∀r ∈ Cr ,

∠(Rrp,Rr0p) 6 min

{
max
r∈Sr

∠(Rrp,Rr0p), π

}
(11)

, ψr(p, Cr). (12)

Proof: Inequality (11) can be derived as follows:

∠(Rrp,Rr0p) 6 min

{
max
r∈Cr

∠(Rrp,Rr0p), π

}
(13)

= min

{
max
r∈Sr

∠(Rrp,Rr0p), π

}
(14)

where (13) follows from maximising the angle over the
rotation cube Cr and capping the angle at the maximum

possible angle between points on a sphere and (14) is a
consequence of the order-preserving mapping, with respect
to the radial angle, from the convex cube of angle-axis
vectors to the spherical surface patch (see Fig. 6a), since
the mapping is obtained by projecting from the centre of
the sphere to the surface of the sphere. See Section 5.4.2 for
further details.

A weak bound on the uncertainty angle due to transla-
tion was derived in [14] by enclosing the translation cuboid
within a circumsphere of radius ρt. From this, a bound on
the maximum angle between a vector p translated by t0 and
p translated by t ∈ Ct for a cube of translation vectors Ct can
be found. For reference, the bound is reproduced here.
Lemma 4. (Weak translation uncertainty angle bound) Given

a 3D point p and a translation cuboid Ct centred at t0
with half space diagonal ρt, then ∀t ∈ Ct,

∠(p−t,p−t0) 6

arcsin

(
ρt

‖p−t0‖

)
if ‖p−t0‖ > ρt

π else

, ψwt (p, Ct). (15)

Proof: As given in Brown et al. [14].
However, a tighter bound can be found by using the

cuboid of translated points (Fig. 6b) directly instead of its
circumsphere. When the cuboid does not contain the origin,
the angle can be found by maximising over the vertices.
Lemma 5. (Translation uncertainty angle bound) Given a 3D

point p and a translation cuboid Ct centred at t0 with
vertices Vt, then ∀t ∈ Ct,

∠(p− t,p− t0) 6

{
max
t∈Vt

∠(p− t,p− t0) if p /∈ Ct

π else

, ψt(p, Ct). (16)

Proof: Observe that for p ∈ Ct, the cuboid containing all
translated points p − t also contains the origin. Therefore
the vectors p− t and p− t0 can be antiparallel (oppositely
directed) and thus the maximum angle is π. For p /∈ Ct,

∠(p− t,p− t0) 6 max
t∈Ct

∠(p− t,p− t0) (17)

= max
t∈Vt

∠(p− t,p− t0) (18)

where (17) follows from maximising the angle over the
translation cuboid Ct and (18) follows from the convexity
of the angle function in this domain. The maximum of a
convex function over a convex set must occur at one of its
extreme points: the vertices. Geometrically, the cuboid p− t
for t ∈ Ct and p /∈ Ct projects to a spherical hexagon on
the unit sphere. The geodesic from an arbitrary fixed point
in the hexagon to any point in the hexagon is maximised
when the variable point is a vertex of the hexagon.

4.2.2 Objective Function Bounds
The preceding lemmas are used to bound the maximum of
the objective function (4) within a transformation domain
Cr × Ct. A lower bound can be found by evaluating the
function at any transformation in the branch. In this case, the
transformation at the centre of the rotation and translation
cuboids is convenient and quick to evaluate.
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Fig. 7. Geometric intuition for the upper bound. The inlier threshold is
relaxed by the two uncertainty angle bounds ψr and ψt, creating a more
permissive inlier set and hence an upper bound on the cardinality.

Theorem 1. (Lower bound) For the transformation domain
Cr × Ct centred at (r0, t0), the lower bound of the inlier
set cardinality can be chosen as

¯
ν , f(Rr0 , t0). (19)

Proof: The validity of the lower bound follows from

f(Rr0 , t0) 6 max
r∈Cr
t∈Ct

f(Rr, t). (20)

That is, the function value at a specific point within the
domain is less than or equal to the maximum.

An upper bound on the objective function within a
transformation domain Cr × Ct can be found using the
bounds on the uncertainty angles ψr and ψt. The geometric
intuition for the upper bound is that it relaxes the inlier
threshold by the two uncertainty angles, creating a more
permissive inlier set, as shown in Fig. 7.
Theorem 2. (Upper bound) For the transformation domain
Cr × Ct centred at (r0, t0), the upper bound of the inlier
set cardinality can be chosen as

ν̄ ,
∑
f∈F

max
p∈P

1
(
θ−∠

(
f ,Rr0(p−t0)

)
+ψr(f , Cr)+ψt(p, Ct)

)
.

(21)

Proof: Observe that ∀(r, t) ∈ (Cr × Ct),

∠
(
f ,Rr(p− t)

)
= ∠

(
R−1r f ,p− t

)
(22)

> ∠(R−1r0 f ,p− t)− ∠(R−1r f ,R−1r0 f) (23)

> ∠(R−1r0 f ,p− t0)− ∠(R−1r f ,R−1r0 f)

− ∠(p− t,p− t0) (24)

> ∠
(
f ,Rr0(p− t0)

)
− ψr − ψt (25)

where (23) and (24) follow from the triangle inequality
in spherical geometry (see Fig. 8) and (25) follows from
Lemmas 3 and 5. Substituting (25) into (4) completes the
proof.

By inspecting the translation component of Theorem 2
and removing one of the two applications of the triangle in-
equality (24), a tighter upper bound can be found. A similar
approach cannot be taken for the rotation component since
R−1r f is a complex surface due to the nonlinear conversion
from angle-axis to rotation matrix representations. To reduce
computation, it is only necessary to evaluate this tighter
bound when ∠

(
f ,Rr0(p− t0)

)
6 θ + ψr(f , Cr) + ψt(p, Ct),

since otherwise the point is definitely an outlier and does
not need to be investigated further.

R−1
r f

R−1
r0 f

p− t

α β
γ

O

(a) Triangle inequality for (23)

p−t0

R−1
r0 f

p− t
β
γ
αO

(b) Triangle inequality for (24)

Fig. 8. The triangle inequality in spherical geometry, given by γ 6 α+β.
The transformed points have been normalised to lie on the unit sphere.

Theorem 3. (Tighter upper bound) For the transformation
domain Cr × Ct centred at (r0, t0), the upper bound of
the inlier set cardinality can be chosen as

ν̄ ,
∑
f∈F

max
p∈P

Γ(f ,p) (26)

where

Γ(f ,p) = max
t∈Ct

1
(
θ−∠

(
f ,Rr0(p−t)

)
+ψr(f , Cr)

)
. (27)

Proof: Observe that ∀(r, t) ∈ (Cr × Ct),

1
(
θ − ∠

(
f ,Rr(p− t)

))
= 1

(
θ − ∠(R−1r f ,p− t)

)
(28)

6 1
(
θ − ∠

(
f ,Rr0(p− t)

)
+ ∠(R−1r f ,R−1r0 f)

)
(29)

6 max
t∈Ct

1
(
θ − ∠

(
f ,Rr0(p− t)

)
+ ψr(f , Cr)

)
(30)

where (29) follows from the triangle inequality in spherical
geometry (see Fig. 8) and (30) follows from Lemma 3 and
maximising over t. Substituting (30) into (4) completes the
proof. See Section 5.4.3 for implementation details.

4.2.3 Comparison of Uncertainty Angle Bounds
The cuboid-based uncertainty angle bounds ψr (11) and
ψt (16) original to this work are smaller than the sphere-
based uncertainty angle bounds ψwr (8) and ψwt (15) from
Hartley and Kahl [30] and Brown et al. [14] respectively.
Specifically, the maximum angular difference between ψt
and ψwt is at least 117◦, shown in Fig. 9. This leads to tighter
bounds on the objective function: it is clear from Theorems 1
and 2 that ν̄ −

¯
ν is smaller when ψr and ψt are smaller. The

proofs that ψr 6 ψwr and ψt 6 ψwt will now be given.
Lemma 6. (Rotation uncertainty angle bounds inequality)

Given a 3D point p and a rotation cube Cr centred at r0
with surface Sr and half side-length δr, then

ψr(p, Cr) 6 ψwr (Cr). (31)

Proof: Inequality (31) can be derived as follows:

ψr(p, Cr) = min

{
max
r∈Sr

∠(Rrp,Rr0p), π

}
(32)

= min {∠(Rr∗p,Rr0p), π} (33)

6 min
{√

3δr, π
}

(34)

= ψwr (Cr) (35)

where (33) replaces the maximisation with an arg max rota-
tion r∗ and (34) follows from Lemma 2.
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Fig. 9. Comparison of translation uncertainty angle bounds when the
centre p − t0 of the translation cuboid p − t lies along a ray from the
origin towards (a) any face centre and (b) any vertex. (c)–(d) The novel
bound ψt is tighter across the entire domain in both cases.

Lemma 7. (Translation uncertainty angle bounds inequality)
Given a 3D point p and a translation cuboid Ct centred
at t0 with vertices Vt and half space diagonal ρt, then

ψt(p, Ct) 6 ψwt (p, Ct). (36)

Proof: Inequality (36) can be derived as follows. For
‖p− t0‖ > ρt, which is guaranteed for ρt 6 ζ ,

ψt(p, Ct) = max
t∈Vt

∠(p− t,p− t0) (37)

6 max
t∈S2

t

∠(p− t,p− t0) (38)

= arcsin

(
ρt

‖p− t0‖

)
(39)

= ψwt (p, Ct) (40)

where (38) follows from maximising the angle over the
circumsphere S2

t of the cuboid instead of the vertices and
(39) is shown in [14] with ρt being the half space diagonal
of the translation sub-cuboid Ct. For the alternate case,

ψt(p, Ct) 6 π = ψwt (p, Ct) (41)

when ‖p− t0‖ < ρt.

5 THE GOPAC ALGORITHM

The Globally-Optimal Pose And Correspondences (GOPAC)
algorithm is outlined in Algorithms 1 and 2.

5.1 Nested Branch-and-Bound Structure
A nested BB structure is employed for computational effi-
ciency, as in [44]. In the outer breadth-first BB search, upper
and lower bounds are found for each translation cuboid
Ct ∈ Ωt by running an inner BB search over rotation space
SO(3) (denoted RBB). The upper bound ν̄ , ν̄t (21) for the
cuboid Ct is found by running RBB until convergence with
the following bounds

¯
νr ,

∑
f∈F

max
p∈P

1
(
θ − ∠

(
f ,Rr0(p− t0)

)
+ ψt

)
(42)

ν̄r ,
∑
f∈F

max
p∈P

1
(
θ − ∠

(
f ,Rr0(p− t0)

)
+ ψt + ψr

)
. (43)

Algorithm 1 GOPAC: a branch-and-bound algorithm for
globally-optimal camera pose & correspondence estimation

Input: bearing vector set F , point-set P , inlier threshold θ,
initial domains Ωr and Ωt

Output: optimal number of inliers ν∗, camera pose (r∗, t∗),
2D–3D correspondences

1: ν∗ ← 0
2: Add translation domain Ωt to priority queue Qt
3: loop
4: Update greatest upper bound ν̄t from Qt
5: Remove cuboid Ct with greatest width δtx from Qt
6: if ν∗ > ν̄t then terminate
7: for all sub-cuboids Cti ∈ Ct do
8: (

¯
νti, r)← RBB(ν∗, t0i, ψt = 0)

9: if ν∗ < 2
¯
νti then (ν∗, r∗, t∗)← Refine(r, t0i)

10: (ν̄ti, ∅)← RBB(ν∗, t0i, ψt)
11: if ν∗ < ν̄ti then add Cti to queue Qt

Algorithm 2 RBB: a rotation search subroutine for GOPAC

Input: bearing vector set F , point-set P , inlier threshold θ,
initial domain Ωr , best-so-far cardinality ν∗, translation
t0, translation uncertainty ψt

Output: optimal number of inliers ν∗r , rotation r∗

1: ν∗r ← ν∗

2: Add rotation domain Ωr to priority queue Qr
3: loop
4: Read cube Cr with greatest upper bound ν̄r from Qr
5: if ν∗r > ν̄r then terminate
6: for all sub-cubes Cri ∈ Cr do
7: Calculate

¯
νri by (42) or (44) with r0i, t0, ψt

8: if ν∗r < ¯
νri then ν∗r ← ¯

νri, r
∗ ← r0

9: Calculate ν̄ri by (43) or (45) with r0i, t0, ψt, ψr
10: if ν∗r < ν̄ri then add Cri to queue Qr

The tighter upper bound (26) instead uses

¯
νr ,

∑
f∈F

max
p∈P

max
t∈Ct

1
(
θ − ∠

(
f ,Rr0(p− t)

))
(44)

ν̄r ,
∑
f∈F

max
p∈P

max
t∈Ct

1
(
θ − ∠

(
f ,Rr0(p− t)

)
+ ψr

)
. (45)

The lower bound
¯
ν ,

¯
νt (19) is found by running RBB using

bounds (42) and (43) with ψt set to zero.
The nested structure has better memory and computa-

tional efficiency than directly branching over 6D transfor-
mation space, since it maintains a queue for each 3D sub-
problem, rather than one for the entire 6D problem. This
requires significantly fewer simultaneously enqueued sub-
cubes, reducing the runtime of priority queue operations.
Moreover, with rotation search nested inside translation
search, ψt only has to be calculated once per translation t
not once per pose (r, t), and F can be rotated (by R−1)
instead of P which typically has more elements. This makes
it possible to precompute the rotated bearing vectors and
rotation bounds for the top 5 levels of the rotation octree to
reduce the amount of computation required in the inner BB
subroutine. Finally, nesting does not weaken the optimality
guarantee. In contrast, ε-suboptimality cannot be guaran-
teed when ε-suboptimal BB algorithms are nested.
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5.2 Integrating Local Optimisation
Line 9 of Algorithm 1 shows how local optimisation meth-
ods are incorporated into the algorithm to refine the camera
pose, in a similar manner to [14] and [44]. Whenever the
BB algorithm finds a sub-cube pair (Cr, Ct) with a greater
lower bound

¯
ν than half the best-so-far cardinality ν∗, the

Perspective-n-Point (PnP) problem is solved, with corre-
spondences given by the inlier pairs at the pose (r0, t0).
For this algorithm, a nonlinear optimisation solver [47] was
selected, minimising the sum of angular distances between
corresponding bearing vectors and points. The local op-
timisation method SoftPOSIT [11] is also applied at this
stage to refine the camera pose without correspondences. In
this way, BB and the refinement methods collaborate, with
PnP finding the best pose given correspondences, SoftPOSIT
finding the nearest local maxima without correspondences
and BB guiding the search for correspondences and jumping
out of local maxima. PnP and SoftPOSIT accelerate conver-
gence since the faster ν∗ is increased, the sooner sub-cubes
(with ν̄ 6 ν∗) can be culled (Alg. 1, Line 11).

5.3 Parallel Implementations
To improve the runtime characteristics of GOPAC, CPU
multithreading was implemented. This program variant
divides the initial translation domain into sub-domains and
runs GOPAC for each sub-domain in separate threads. It
returns the greatest ν∗ and the associated pose and cor-
respondences. However, sub-optimal branches may not be
pruned as quickly with this approach because the best ν
value found so far is not communicated between threads.

In view of this, a massively parallel version of GOPAC
was implemented on the GPU with regular communication
between the threads. It directly branches over 6D transfor-
mation space with each thread computing the bounds for
a single branch. We use 16384 concurrent threads and an
adaptive branching strategy that chooses to subdivide the
rotation or translation dimensions based on which has the
greater angular uncertainty, reducing redundant branching.

Source code is publicly available on the author’s website
and at the DOI 10.4225/08/5a014a042bcfd.

5.4 Further Implementation Details
5.4.1 Initialising the Number of Inliers
If the best-so-far number of inliers ν∗ is initialised to a value
close to the optimal value, sub-optimal branches are pruned
sooner, reducing the overall runtime. However, the user is
unlikely to know a tight lower bound on the optimal value.
Therefore, we propose (i) a P3P-RANSAC initialisation and
(ii) a guess-and-verify strategy without loss of optimality.
The latter provides especial benefit when 2D outliers are
rare: set ν∗ = n; run GOPAC; stop if an optimality guarantee
is found, otherwise update n ← max(n − s, 0) and repeat.
We initialise n to N − 1 and s to d0.1Ne.

5.4.2 Rotation Uncertainty Angle Bound
Lemma 3 requires the evaluation of the angle maximiser
maxr∈Sr ∠(Rrp,Rr0p), where Sr is the surface of the ro-
tation cube Cr. While it is possible to calculate the bound
by sampling the cube surface using a grid of step-size σg ,

evaluating the angle at each sample and adding
√

2/2×σg to
the greatest angle calculated (by Lemma 1), it is significantly
more computationally efficient to use a different approach.

The alternative approach is contingent on two assump-
tions: (i) the maximum always occurs on the cube skele-
ton (edges and vertices), not the faces; and (ii) the angle
function along each edge is unimodal. Assumption (i) has
been demonstrated empirically in simulations and assump-
tion (ii) has been demonstrated for all rotation cubes used in
the GOPAC algorithm (octree subdivisions of the angle-axis
cube [−π, π]3). In the vast majority of cases, the function
is (quasi)convex and thus the edge angle maximiser occurs
at one of the two vertices (extreme points). Otherwise, the
maximum occurs on the edge and can be found using the
efficient golden-section search routine [48], which assumes
unimodality but does not require the time-consuming eval-
uation of the derivative. However, the sign of the derivative
at the vertices needs to be evaluated to identify when the
angle maximiser occurs on an edge. The derivative of the
rotation angle function is obtained in Lemma 8.
Lemma 8. (Derivative of the rotation angle function) Given

a unit 3D bearing vector f and a rotation cube Cr centred
at r0 with vertices {ri}i∈[1,8], then the derivative of the
rotation angle function

Aij(λ) = arccos
(
(R−1r0 f) · (R−1rij(λ)

f)
)

(46)

with respect to λ, for an edge parametrisation of
rij(λ) = ri + λ(rj − ri) with λ ∈ [0, 1], is given by

dAij
dλ

=
fᵀRr0R

ᵀ
rij [f ]×

(
rijr

ᵀ
ij−(Rrij−I)[rij ]×

)(
ri−rj

)
‖rij‖2

√
1− (fᵀRr0R

ᵀ
rij f)

2
.

(47)

Proof: See appendix.
To calculate the rotation uncertainty angle bound ψr:

(i) for each edge rij , evaluate the sign of the derivative of
the angle function at λ = 0 and λ = 1 using (47);

(ii) if sgn
dAij

dλ

∣∣
λ=0

> 0 and sgn
dAij

dλ

∣∣
λ=1

< 0, use golden-
section search with a tolerance of π/2048 to find the
angle maximiser on that edge and add π/2048;

(iii) otherwise, the angle maximiser on that edge is one
of the vertices: evaluate the angle with respect to the
projected cube centre at both vertices and choose the
maximum; and

(iv) choose the maximum angle over all edges as ψr.
Note that golden-section search terminates at a tolerance of
π/2048. By Lemma 1, the bound is therefore incorrect by at
most π/2048 = 0.088◦, a value that is added to the upper
bound to ensure optimality.

5.4.3 Tighter Upper Bound
The upper bound given in Theorem 3 requires the evalua-
tion of Γ(f ,p) for a given translation cuboid Ct. Γ may be
evaluated by observing that the minimum angle between a
ray f and a cuboid Rr0(p − t) for t ∈ Ct is (a) the angle
between the ray and the point on the skeleton Skt of the
cuboid (vertices and edges) with least angular displacement
from f or (b) zero if the ray passes through the cuboid. Thus,

Γ(f ,p) =

{
max
t∈Skt

1
(
θ − ∠

(
f ,Rr0(p− t)

)
+ ψr

)
if (a)

1 if (b)
(48)
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O

R−1
r0 f

p− t0

v̂

v̂∗

γ

Fig. 10. Projection of the translation cuboid p− t for t ∈ Ct onto the unit
sphere. The resulting spherical hexagon reduces the angle calculation
to finding in which spherical lune (wedge) the rotated bearing vector
R−1

r0 f resides and then solving for the closest point v̂∗ on the geodesic
of the hexagon edge in that lune. γ is the smallest angle between the
rotated bearing vector and any point in the translation cuboid.

The key here is finding ∠(f ,Rr0(p − t)) that maximises Γ
over the skeleton. For the first case in (48), this can be done
by finding p−t with least angular displacement from R−1r0 f .
The following technique is applied:

(i) find the octant of p − t0 with respect to the coordinate
axes and project the cube to the unit sphere as a spher-
ical hexagon;

(ii) determine in which lune induced by the spherical
hexagon R−1r0 f resides; and

(iii) solve for the point on the hexagon edge in that lune
with least angular displacement from R−1r0 f .

By design, the cuboid of translated points p − t for t ∈ Ct
lies entirely in one octant of R3. By finding the octant (i),
the cuboid can be projected to a spherical hexagon on the
unit sphere, as shown in Fig. 10. This simplifies the problem
to finding the closest point v̂∗ on the spherical hexagon to
the rotated bearing vector. Finding in which lune the rotated
bearing vector lies (ii) further simplifies the problem to one
of finding the closest point on a geodesic to the rotated
bearing vector. This can be solved in closed form (iii).

5.5 Convergence Analysis
In order for the algorithm to converge, the bounds must
converge as the size of the branch tends to zero. The upper
bound (21) is equal to the lower bound (19) when the
uncertainty angle bounds ψr and ψt are zero. Similarly,
the tighter upper bound (26) is equal to the lower bound
when the rotation uncertainty angle bound ψr is zero and
the translation sub-cuboid Ct is of size zero, since then
∠
(
f ,Rr0(p− t)

)
= ∠

(
f ,Rr0(p− t0)

)
for t ∈ Ct. It remains

to be seen that ψr and ψt tend to zero as the size of the
sub-cuboids Cr and Ct tend to zero, irrespective of f or p.

The uncertainty bound ψr involves a maximisation over
all rotations on the surface of the sub-cube Cr . As the
sub-cube size tends to zero, in the limit the surface and
centre of the cube become identified and therefore the angle
∠(Rrf ,Rr0f) equals zero. A similar argument applies for
the uncertainty bound ψt, with the additional observation
that a point p cannot lie inside a sufficiently small sub-
cuboid Ct, since the translation domain has been restricted

θ

O
f1f2 θ

p1p2

<π−2θ

Fig. 11. A rotation-only critical configuration. The angle ∠(p1,p2) is
infinitesimally less than π − 2θ. Proving that there is only 1 inlier would
require infinitesimally small rotation sub-cubes.

to exclude translations for which ‖p− t‖ < ζ . Therefore the
bounds converge as the size of the sub-cuboids tend to zero.

However, an advantage of the inlier maximisation for-
mulation is that the gap between the bounds becomes
exactly zero well before the branch size becomes infinites-
imal. This is not the case for critical configurations of
points and bearing vectors that will only converge in the
limit, as demonstrated in Fig. 11. Therefore, to guarantee
that the algorithm terminates in finite time, a small tol-
erance value η must be subtracted from the uncertainty
angles. That is, the uncertainty angles in all the formu-
lae must be replaced with their primed versions: ψ′r =
ψr − η and ψ′t = ψt − η. For the tighter upper bound,
η also has to be added to ∠(f ,Rr0(p − t)). Except where
noted, we set η to machine epsilon to ensure optimal-
ity. In C++, this can be accessed by using the command
std::numeric_limits<float>::epsilon().

5.6 Time Complexity Analysis
Explicitly including the tolerance η makes it possible to
derive a bound on the worst-case search tree depth and
thereby obtain the time complexity of the algorithm as
O(MN). However, the notation conceals a large constant.
Theorem 4. (Time Complexity of GOPAC) Let ρt0 be the

half space diagonal of the initial translation sub-cuboid
Ct0 , ζ be the translation restriction parameter, η be the
uncertainty angle tolerance, M be the number of 3D
points and N be the number of bearing vectors, then
the time complexity of the GOPAC algorithm is given by

O
(
ρ3t0ζ

−3η−6MN
)
. (49)

Proof: Calculating the bounds involves a summation over
F and a maximisation over P , therefore the complexity is
O(MN). For the nested structure, the number of bound
calculations is at worst 4NtNr where Nt and Nr are the
maximum number of translation and rotation sub-cuboids
examined. Nt and Nr are exponential in the worst-case tree
search depths Dt and Dr , but the depths are logarithmic
in η−1. Therefore, the number of examined sub-cuboids
is polynomial in η−1. Combining these analyses gives the
result (49). For a full derivation, see the appendix.

However, experimental evaluation is more revealing for
BB algorithms than time complexity analysis, since BB can
prune large regions of the search space, reducing the size of
the problem. This is not reflected in the complexity analysis.
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6 RESULTS

The GOPAC algorithm, denoted GP, was evaluated with
respect to the baseline algorithms RANSAC [1], SoftPOSIT
[11] and BlindPnP [12], denoted RS, SP and BP respectively,
using both synthetic and real data. The RANSAC approach
uses the OpenGV framework [47] and the P3P algorithm [7]
with randomly-sampled correspondences. SoftPOSIT and
BlindPnP are local optimisation algorithms and hence re-
quire a pose prior. A torus or cube prior was used in the
synthetic experiments for a fair comparison. In general, the
space of camera poses is much larger and a good prior can
rarely be known in advance. The algorithm of Brown et
al. [14] was not evaluated because the code and feature
sets were not released publicly. However, our bounds were
proved to be tighter in Section 4.2.3 and this is shown exper-
imentally in Section 6.1. Except where otherwise specified,
the inlier threshold θ was set to 1◦, the lower bound from
Theorem 1 and the upper bound from Theorem 2 were used,
SoftPOSIT and nonlinear PnP refinement were applied and
the point-to-camera limit ζ was set to 0.1. All experiments
were run on a PC with a 3.4GHz quad core CPU, 8 threads
were used for CPU multithreading, and up to 4 GeForce
GTX 1080Ti GPUs were used for GPU multithreading.

6.1 Synthetic Data Experiments
To evaluate GOPAC in a setting where the true camera
pose was known, 50 independent Monte Carlo simulations
were performed per parameter setting, using the framework
of Moreno Noguer et al. [12]: M random 3D points were
generated from [−1, 1]3; a fraction ω3D of the 3D points were
randomly selected as outliers to model occlusion; the inliers
were projected to a 640×480 virtual image with an effective
focal length of 800; normal noise was added to the 2D points
with a standard deviation σ of 2 pixels; and random points
were added to the image such that a fraction ω2D of the
2D points were outliers. In addition to these random point
experiments, the same procedure was applied to a repetitive
CAD structure with M = 27 3D points. Examples of both
datasets and alignment results are shown in Fig. 12.

The evolution of the global lower and upper bounds over
time is shown in Fig. 12c. Branch-and-Bound (BB) and the
local refinement methods collaborate to increase the lower
bound with BB guiding the search into convergence basins
with increasingly higher local maxima and the refinement
methods jumping to the nearest local maximum (the stair-
case pattern). It can be observed that the majority of the
runtime was spent decreasing the upper bound, indicating
that it will often find the global optimum when terminated
early, albeit without an optimality guarantee.

To facilitate fair comparison with SoftPOSIT and
BlindPnP, pose priors were used for these experiments.
The torus prior constrains the camera centre to a torus
around the 3D point-set with the optical axis directed to-
wards the model, as in [12]. For BlindPnP, the poses were
represented by a 20 component Gaussian Mixture Model
(GMM) generated from the torus. For SoftPOSIT, the 20
mean poses from the mixture model were used to initialise
the algorithm. GOPAC was given a set of translation cubes
that approximated the torus and was not given any rotation
prior. The cube prior constrains the camera centre to a cube

(a) 3D Results (b) 2D Results (c) Bound Evolution

Fig. 12. Sample 2D and 3D results for two experiments using the
random points and CAD structure datasets. (a) 3D models, true and
GOPAC-estimated camera fulcra (completely overlapping) and toroidal
pose priors. (b) 2D alignment results. True projections of non-occluded
3D points are shown as black dots, 2D outliers as red dots, GOPAC
projections as black circles and GOPAC-classified 3D outliers as red
crosses. (c) Evolution over time of the upper (red) and lower (magenta)
bounds, remaining unexplored translation volume (blue) and translation
queue size (green) as a fraction of their maximum values.
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(d) ω3D = 0.75

Fig. 13. Results for the random points dataset with the torus prior. The
mean success rates and median runtimes are plotted with respect to the
number of random 3D points and the 3D outlier fraction, with ω2D = 0
and 50 Monte Carlo simulations per parameter value.

centred randomly in [−1, 1]3 with side-length 0.5 and has
no restriction on rotation. This prior is more realistic since
it assumes much less about the camera pose. To model the
increased rotation uncertainty, 50 GMM components or pose
initialisations were provided to the local methods.

The results are shown in Fig. 13, 14 and 15. Two success
rates are reported: the fraction of trials where the true max-
imum number of inliers was found and the fraction where
the correct pose was found, where the angle between the
output rotation and the ground truth rotation is less than 0.1
radians and the camera centre error ‖t−tGT‖/‖tGT‖ relative
to the ground truth tGT is less than 0.1, as used in [12].
The 2D and 3D outlier fractions were fixed to 0 when not
being varied and CPU multithreading was used when 2D
outliers were present (ω2D > 0). GOPAC outperformed the
other methods, reliably finding the global optimum while
still being relatively efficient, particularly when the fraction
of 2D outliers was low. For the repetitive CAD structure,
GOPAC retrieved some incorrect poses when 75% of the 3D
points were occluded, due to symmetries, while still finding
the optimal number of inliers.
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Fig. 14. Results for the random points and CAD structure datasets with
the torus prior. The mean success rates and median runtimes are plotted
with respect to the 3D and 2D outlier fractions, for 50 Monte Carlo
simulations per parameter value.
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Fig. 15. Results for the random points dataset with the cube prior. The
mean success rates and median runtimes are plotted with respect to the
2D outlier fraction, for 50 Monte Carlo simulations per parameter value.

ψw

t ψt Γ 

R
el

at
iv

e 
R

un
tim

e

 

 ψw

r

ψr

Fig. 16. Comparison of the different upper bound functions. Runtime is
plotted relative to the maximum value. The weakest upper bound using
ψw
r and ψw

t (leftmost) is 50% slower than the tightest upper bound using
ψr and bounding function Γ (rightmost).

To exploit the observation that the majority of the run-
time was spent decreasing the upper bound once the op-
timum had been attained, the random point experiments
were repeated using “truncated GOPAC,” halting after 30s.
Despite the truncated runtime, it achieved success rates of
100%, albeit sometimes without an optimality guarantee.
Finally, Fig. 16 shows the improvement attributable to the
tighter upper bounds. We measured the runtime with 10
random 3D points and 50% 2D outliers using upper bounds
with different combinations of the uncertainty angle bounds
ψwr , ψwt , ψr and ψt, and the tighter bounding function Γ (26).

6.2 Real Data Experiments
To evaluate the algorithm on real data, the Data61/2D3D
(formerly NICTA) [49] and Stanford 2D-3D-Semantics (2D-
3D-S) [50] datasets were used. They are both large and
repetitive multi-modal datasets with panoramic 2D images,
large-scale 3D point-sets, and semantic annotations for both
modalities. The former is an outdoor dataset collected from

a survey vehicle with a laser scanner and 360◦ camera and
the latter is an indoor dataset collected from a structured-
light RGBD camera. Finding the pose of a camera with re-
spect to a point-set collected by a depth sensor from a single
image and without a good initialisation is an unsolved prob-
lem. The sub-problem of extracting points that correspond
to known pixels in an image is itself a challenging unsolved
problem for 2D–3D registration pipelines. However, since
GOPAC jointly solves for pose and correspondences, this
problem can be relaxed to that of isolating regions of the
point-set that appear in the image and vice versa. To do
this, semantic labels of the images and point-set were used
to select regions that were potentially observable in both
modalities: building points for the outdoor dataset and fur-
niture points for the indoor dataset. The number of selected
pixels and points were then reduced to a manageable size
using grid downsampling and k-means clustering, and the
pixels were converted to bearing vectors. As a result, there
is a good chance that each bearing vector has a 3D point
inlier, despite not knowing the correspondences in advance.

6.2.1 Outdoor Dataset
For the first set of experiments, a dataset was generated
using this pre-processing technique for scene 1 of the
Data61/2D3D dataset, consisting of a point-set with 88
points and 11 sets of 30 bearing vectors, shown in Fig. 17.
The inlier threshold θ was set to 2◦, the 2D outlier fraction
guess ω2D was set to 0.25 and the translation domain was
set to 50× 5× 5m, covering two lanes of the road since the
camera was known to be mounted on a vehicle. Results for
the GOPAC and RANSAC algorithms are shown in Fig. 17
and Table 1. GOPAC found the optimal number of inliers
for all frames and the correct camera pose for the majority
of frames, despite the naı̈vety of the 2D/3D point extraction
process. The failure modes for GOPAC were 180◦ rotation
flips, due to ambiguities arising from the low angular
separation of points in the vertical direction. In contrast,
RANSAC was rarely able to find the correct pose even
after 200 million iterations, due to the hard combinatorial
problem of searching over all possible correspondences. In
addition, SoftPOSIT and BlindPnP were unable to find the
correct camera pose for any image in this dataset, even
when supplied the ground truth pose as a prior, due to
being sensitive to 3D points behind the camera and not
natively supporting panoramic imagery, requiring an arti-
ficially restricted field of view. We also evaluated truncated
GOPAC, terminating after 30s. It found the optimal number
of inliers for 45% of the images and the correct pose for
64%, illustrating the difficulty of this ill-posed problem and
motivating the necessity for globally-optimal guided search.

Table 1 also compares the serial and parallel (CPU and
GPU) implementations of the GOPAC algorithm. The run-
time of the single GPU implementation was two orders of
magnitude faster than the serial implementation, as shown
in Fig. 18, without any loss of optimality or accuracy. In
addition, the effect of relaxing the angular tolerance η from
0 (machine epsilon) to 10−3 radians is reported. Some reduc-
tion in runtime is observed, without any loss of optimality.
However, if the angular tolerance is too large, the algorithm
may discard branches containing the optimal pose. Thus, η
should be at least an order of magnitude smaller than θ.
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(a) 3D point-set (grey and green), 3D features (black dots) and ground-
truth (black), RANSAC (red) and GOPAC (blue) camera poses. The
ground-truth and GOPAC camera poses coincide, whereas the RANSAC
pose has a translation offset and a 180◦ rotation offset.

(b) Panoramic photograph and extracted 2D features (top), building points
projected onto the image using the RANSAC camera pose (middle) and
building points projected using the GOPAC camera pose (bottom).

Fig. 17. Qualitative camera pose results for scene 1 of the Data61/2D3D
dataset, showing the pose of the camera when capturing image 10 and
the projection of 3D building points onto image 10.

TABLE 1
Camera pose results for serial and parallel (CPU and GPU)
implementations of GOPAC and RANSAC for scene 1 of the

Data61/2D3D dataset. The median translation error, rotation error and
runtime and the mean inlier recall and success rates are reported.

Implementation Serial Parallel RAN
CPU CPU GPU SAC

Angular tolerance η 0 10−3 0 10−3 0 10−3 –
Translation error (m) 2.30 2.22 2.30 2.29 2.22 2.22 28.5
Rotation error (◦) 2.18 2.08 2.08 2.09 2.10 2.09 179
Recall (inliers) 1.00 1.00 1.00 1.00 1.00 1.00 0.81
Success rate (inliers) 1.00 1.00 1.00 1.00 1.00 1.00 0.00
Success rate (pose) 0.82 0.82 0.82 0.82 0.82 0.82 0.09
Runtime (s) 614 352 477 323 8 6 471

η=0 η=10−3 η=0 η=10−3 η=0 η=10−3
0

500

1000

Serial Parallel: CPU Parallel: GPU
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Fig. 18. Comparing the runtime of the serial and parallel (CPU and GPU)
implementations of GOPAC for scene 1 of the Data61/2D3D dataset.

For the next set of experiments, the number of 2D and
3D features were increased to 50 2D and 500 3D features
on average (2m3 voxel downsampling). All 10 scenes from
the Data61/2D3D dataset were processed, with 11 images
per scene. The inlier threshold θ was set to 1◦, the angular

TABLE 2
Camera pose results for the quad-GPU implementation of GOPAC for
the Data61/2D3D dataset. The median translation error, rotation error
and runtime and the mean inlier recall and success rates are reported.

Scene 1 2 3 4 5 6 7 8 9 10
Point-set size M 514 572 721 314 259 234 245 439 819 899
Translation error (m) 1.1 1.0 1.1 1.6 1.1 1.1 0.3 1.5 0.9 0.8
Rotation error (◦) 0.7 1.5 1.5 1.4 1.2 0.8 0.6 1.4 0.8 1.5
Recall (inlier) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Success rate (inlier) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Success rate (pose) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 1.0 1.0
Runtime (s) 15 27 11 7 11 25 7 20 25 24

TABLE 3
Camera pose results for the quad-GPU implementation of GOPAC (GP)

and RANSAC (RS) for area 3 of the Stanford 2D-3D-S dataset. The
median translation error, rotation error and runtime and the mean inlier

recall and success rates are reported.

Room type lounge office other
Mean point-set size 534 299 365
Method GP RS GP RS GP RS
Translation error (m) 0.07 0.68 0.18 1.85 0.13 1.87
Rotation error (◦) 1.74 13.0 3.40 89.7 2.95 37.5
Recall (inliers) 1.00 0.62 1.00 0.63 1.00 0.59
Success rate (inliers) 1.00 0.00 1.00 0.00 1.00 0.00
Success rate (pose) 1.00 0.20 0.80 0.10 1.00 0.14
Runtime (s) 12 121 40 121 35 121

tolerance η was set to 10−3, and the translation domain was
set to 50 × 5 × 5m. Quantitative results for the quad-GPU
implementation of GOPAC are given in Table 2. The single
pose failure case (< 1%) was caused by a symmetry in the
bearing vector set. In contrast, RANSAC was able to find
only 13% of the poses when run for 2 minutes per frame.

6.2.2 Indoor Dataset
For these experiments, a dataset was generated from area 3
of the 2D-3D-S dataset, using the same pre-processing tech-
nique as the previous section with 0.3m3 voxel downsam-
pling. It consists of 15 rooms (lounges, offices, WCs and a
conference room) and 27 sets of 50 bearing vectors, where
the camera is at least 80cm from any item of furniture. The
rooms were treated as separate point-sets to model visibility
constraints, which assumes that the location of the camera
is known to the room level. The inlier threshold θ was set
to 2.5◦, the angular tolerance η was set to 0.25◦, and the
translation domain was set to the room size. Results for
the quad-GPU implementation of GOPAC and RANSAC are
given in Fig. 19 and Table 3.

We also tested GOPAC with regular, non-panoramic im-
ages and a more sophisticated data pre-processing strategy,
extracting furniture edge points in 2D and 3D using the
instance-level segmentations. The edge-features A and B
datasets were generated from the 2D-3D-S dataset (lounge 1,
area 3) and consist of a point-set (296 points) and image sets
A and B (161 and 103 images respectively) with up to 66 2D
features. B is a subset of A in which 5 or more objects were
at least partially visible in each frame. Results for the quad-
GPU implementation with θ = 1◦ and η = 0.1◦ are given
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(a) 3D point-set (grey and green), 3D features (black dots) and ground-
truth (black), RANSAC (red) and GOPAC (blue) camera poses.

(b) Panoramic photograph and extracted 2D features (top), furniture
points projected onto the image using the RANSAC camera pose (middle)
and furniture points projected using the GOPAC camera pose (bottom).

Fig. 19. Qualitative camera pose results for lounge 1 of the Stanford
2D-3D-S dataset, showing the pose of the camera when capturing the
image and the projection of 3D furniture points onto it.

TABLE 4
Camera pose results for the quad-GPU implementation of GOPAC (GP)

and RANSAC (RS) for the edge-features A and B datasets. The
median translation error, rotation error and runtime and the mean inlier

recall and success rates are reported.

Dataset A B
Method GP RS GP RS
Translation error (m) 0.13 6.11 0.10 5.77
Rotation error (◦) 2.90 141 1.88 129
Recall (inliers) 1.00 0.69 1.00 0.56
Success rate (inliers) 1.00 0.00 1.00 0.00
Success rate (pose) 0.68 0.00 0.99 0.00
Runtime (s) 44 120 52 120

in Table 4. GOPAC was more effective on set B, since set A
contains many images with few features, such as close-up
images of blank walls that are not amenable to alignment.

7 CONCLUSION

In this paper, we have introduced a robust and globally-
optimal solution to the simultaneous camera pose and cor-
respondence problem using inlier set cardinality maximisa-
tion. The method applies the branch-and-bound paradigm
to guarantee optimality regardless of initialisation and uses

local optimisation to accelerate convergence. The pivotal
contribution is the derivation of the function bounds using
the geometry of SE(3). The algorithm outperformed other
local and global methods on challenging synthetic and real
datasets, finding the global optimum reliably, with a GPU
implementation greatly reducing runtime. Further investi-
gation is warranted to develop a complete 2D–3D pipeline,
from segmentation and clustering to alignment.
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