Regerator: a Registry Generator for Blockchain

An Binh Tran', Xiwei Xu!? Ingo Weber!2, Mark Staples'2, and Paul Rimba'

! Data61, CSIRO, Sydney, Australia
2 School of Computer Science and Engineering, UNSW, Sydney, Australia
{firstname.lastname}@data6l.csiro.au

Abstract. A registry is a list of information recorded by a trusted au-
thority. Registries have security requirements for data integrity and avail-
ability, and for the ability to connect with other registries. Building reg-
istries on a blockchain leverages key properties of blockchains, including
data integrity, immutability, and availability. By using a blockchain as
uniform infrastructure, different registries can also more easily interact
with each other. In this paper, we present a browser-based tool for the
model-driven generation and deployment of registries as smart contracts
on blockchain. The tool also generates web-based RESTful APIs and
user interfaces to interact with the generated registries. We evaluate the
feasibility and transaction costs for this approach using metadata from
data.gov.au, stored on a decentralised derivative of CKAN (a web-based
open-source data registration system) built on the Ethereum blockchain®.

Keywords: Blockchain, registry, code generator, smart contract

1 Introduction

A registry is a list of information recorded and managed by a trusted authority.
For example, a government might maintain a registry to store information about
businesses, including their business number and name. However, a centralised
service maintaining a registry is a single point of failure for the whole system.
One approach to address this is to use a blockchain [4] for the registry, which is
an emerging technology for secure, decentralized and transactional data sharing
across a large network of untrusted participants without relying on a central
trusted authority to record and validate transactions.

The blockchain data structure is a time-stamped list of blocks. The blocks are
chained together cryptographically: each block is digitally signed and “chained”
to the previous block by including that block’s hash value. New blocks are only
appended to the end of the chain, thus the blockchain provides an immutable
data storage: existing transactions cannot be updated or deleted. The immutable
chain of historical transaction provides non-repudiation of the stored data. Cryp-
tography and digital signatures are used to prove identity and authenticity and
to enforce read and write access control to the blockchain. A blockchain network

3 A screencast video of this demo can be found at https://youtu.be/vDj2yoX80is.

https://youtu.be/vDj2yoX8Ois

relies on miners to aggregate transactions into blocks and append them to the
blockchain. Every transaction within the new block is verified by participants
of the network to ensure integrity. The whole network reaches a consensus on
whether a new block is included into the blockchain.

Building registries on blockchain can provide increased confidence in data
integrity, availability, transparency and immutability, and there is strong interest
from industry and government around this idea. In particular, data integrity
and availability are two of the key requirements of registries [2]. Additionally,
if we use a blockchain as a unified infrastructure, multiple registries can more
easily interact with each other. There are registries being built on blockchain
in ad-hoc ways, for example, Namecoin?, which is a domain name registry that
shares the same network with Bitcoin®, and Abscribe®, which is an artwork
registry that allows artists to register and manage the ownership of their digital
artwork. However, building a registry on blockchain is non-trivial due to the
steep learning curve of the technology [1]. Regis” is a contract generator on
Ethereum?® blockchain, but only provides very basic operations.

In this paper, we present Regerator, which is a tool that follows a model-
driven approach to provide templates for the developers to customize registries
and automatically generate and deploy registries on blockchain. We use a web
form and a model that is less bound to the underlying blockchain technology.
Regerator includes 1) a smart contract generator that can generate and deploy
smart contracts representing registries on Ethereum blockchain, and 2) a gen-
erator for web-based RESTful APIs and user interfaces to interact with the
generated registries. The envisioned users of our tool are developers with lim-
ited knowledge of blockchains or smart contracts. The feasibility of the tool
is illustrated through a study of an open data registry, using meta-data from
data.gov.au, and a registry model derived from the CKAN platform.

2 Registries on Blockchain

Registries are authoritative databases for specific entities and are used to manage
many aspects of daily life, such as land titles, business names, books, marriages,
births and deaths, music, films and domain names. Many public registries are
hosted and maintained by government agencies whose authority guarantees au-
thenticity for the registered entities. Every change to a registry is recorded with
a digital fingerprint, which can be verified independently. A registry should store
a history of all changes and be open to independent scrutiny. A registry may
reference other registries to reduce duplication and errors. Registries should be
highly available, because other registries and services depend on them [2]. Open
registries are publicly available, which means that the registry may be accessed,

4 https://namecoin.org/

® https://bitcoin.org/

5 https://www.ascribe.io/

" https://regis.nu/

8 https://www.ethereum.org/

data.gov.au
https://namecoin.org/
https://bitcoin.org/
https://www.ascribe.io/
https://regis.nu/
https://www.ethereum.org/

copied, or derived freely by the public. For instance, a business name registry,
such as the Australian Business Register?, is a public registry whose entities can
be requested by anyone at any given time. Building registries on blockchain can
leverage key properties provided by blockchain and utilise the infrastructure of
blockchain to achieve interoperability.

Integrity concerns the accuracy and consistency of data over its entire
life-cycle. Data integrity is a key requirement of a registry, which means that
the items can be only registered and changed by the authorized users. Many
blockchain techniques are censorship-resistant, which helps to ensure the ongo-
ing integrity of the full log behind the registry.

Availability is also a key requirement for registries, especially national pub-
lic registries, which form the basis for many other services that utilize the data
from the registries. A blockchain system maintains consensus on data that is
replicated across the network with many processing nodes, so that there is no
single point of failure since the infrastructure is fully decentralized.

Interoperability is achieved since blockchain provides a universal infras-
tructure for registries to easily refer to and interoperate with each other.

Efficient reading is achieved because every node within a blockchain net-
work has a local copy of all historical data. This allows large-scale users of the
registry to access local copies of the registry directly, which may reduce latency
and cost. However, light users might find the cost of operating a full node rela-
tively high, e.g., when compared to API calls.

Programmability is provided by smart contracts which allow the imple-
mentation of more sophisticated, flexible, and finer-grained access control models
to register and manipulate the items in the registry. Smart contracts are pro-
grams that can be deployed and running across the blockchain network [3]. Smart
contracts can express triggers, conditions, and even an entire business process.
And the computational results are verified by the participants of the network
and recorded on blockchain. For example, transferring ownership of items can
be easily implemented in smart contracts. Ethereum is the most popular second-
generation blockchain.

Immutability is another key property of blockchain. On one hand, im-
mutability enables an audit trail of all the historical operations on the registry,
so there is complete traceability of records. On the other hand, some registries
need to be able to remove records from the registry as if those records were never
created, e.g., since their creation violated legislation.

3 Regerator

Regerator is a model-driven framework for the generation of registries on a
blockchain, and for the generation of interfaces to those registries. Currently
it generates registries for Ethereum and Solidity (a smart contract language).
However, as a model-driven framework it could potentially support additional

9 https://abr.gov.au/

https://abr.gov.au/

Smart contract generator Smart contract manager

| Template | |Dep|oyment| | Interaction | | Monitor |

| A
Smart Smart contract
contract code address and interface
“a -
Registry of Blockchain
registries

Fig. 1. Overview of Registry Generator on Blockchain

deploy

back-end blockchain platforms in future, provided that those platforms have
sufficiently-expressive smart contract languages. Regerator has three core com-
ponents: a smart contract generator, a registry of registries, and interfaces for
smart contract management, as shown in Fig. 1.

3.1 Smart Contract Generator

The smart contract generator allows the users of Regerator to generate smart
contract registries from registry models, and to deploy the generated smart con-
tracts onto the blockchain. The smart contract model has four parts, including
basic information, registry type, basic operations and advanced operations.

Basic information includes the registry name, description, and user-defined
data fields and their types.

Registry type can be ‘single’ or ‘distributed’. The ‘single’ registry type
holds all records as values in the data store for a singleton smart contract for the
registry. The ‘distributed’ type manages each record as a separate smart contract.
A main registry smart contract creates these contracts and stores pointers to
them. The ‘single’ option is suitable for simple registries, while the ‘distributed’
option is suitable for registries with complex operations, such as finer-grained
permission management at individual record level.

Basic operations are the operations that can be performed on an individ-
ual record, including Create/Read/Update/Delete and existence checking. Users
could configure whether or not a record is updatable.

Advanced operations include access control, foreign key, version control,
provenance, and trading. We explain them in more detail below.

Access control is required to restrict users to certain operations. In the case
of a public registry, only authorised government agencies are allowed to insert
or update records, even though the registry is readable by the public. To enable
permission management, a whitelist or a blacklist of addresses can be provided
for the invocation of operations. We allow for definition of access control mech-
anisms at the registry layer or the record layer. We provide two types of access
control management. The basic type is to check the permission directly before
executing an operation. The second type is to use a separate indirectly-invoked

permission smart contract as a gateway to manage the whitelist or the black-
list; the operations of the registry then only check against the address of the
permission contract. Deciding between these two alternatives depends on sev-
eral factors, such as coupling, modifiability and the size of the smart contract,
which impacts the cost of deployment. Foreign key is a concept borrowed from
relational database, which allows users to include the identity of a record from
one registry as an attribute of a record to another registry as a way to de-
fine the relationship between two registries. Version control allows users to
explicitly add a version number to a certain update on a registry and enables
more efficient query. Provenance in the context of registry refers to a log of
all the operations that have been executed on a given registered entity. Such
information is necessary for auditing data integrity. Blockchain-based registries
naturally support provenance, as all data on the blockchain is immutable and
valid. Trading/transferring ownership is required by registries that allow for
trading registered items, such as domain names registered in Domain Name Sys-
tem (DNS). This function is implemented as an escrow, which holds the money
from the buyer first, and then transfers the money to the current owner of the
item after changing the ownership. Multi-Signature requires multiple parties
to jointly sign a transaction to invoke a smart contract operation. For instance,
a publication registration like arXiv.org'® might require the permissions from all
the authors of an article to update or delete the record. This function is planned
for future work.

After registries have been defined, the smart contract generator provides a
view to show the registries and the relationships among them in a model. Users
can then deploy the registries on blockchain.

3.2 Registry of Registries on Blockchain

The registry of registries stores all the registries generated using Regerator on-
chain. This facilitates version control of the generated registries. If a registered
registry is updated to a new version, the developer needs to add the address of the
new smart contract to the registry of registries. Users could query the registry of
registries to check the current status of a registry or retrieve a historical version.

3.3 Smart Contract Manager

The smart contract manager provides web-based RESTful APIs and user inter-
faces to allow users to manage and interact with the generated registries. For
each of the functions defined in a registry, there is a dry-run mechanism that val-
idates and tests the transaction by invoking the function on the local blockchain
node behind the interface. If the output of the dry-run matches the user’s expec-
tation, the transaction is submitted into the blockchain network. This dry-run
mechanism allows users to check the effect of their transactions before making
permanent changes and incurring actual cost for submitting the transactions

10 https://arxiv.org/

to the blockchain network. A smart contract monitor provides functionality to
monitor contract events. In Ethereum, smart contracts can emit events and write
logs to the blockchain when a transaction is processed. The users can watch for
new events, which show up on the page when there are events being recorded on
blockchain during the contract execution.

4 Exemplar Case Study: Open Data Registry

To demonstrate the feasibility of our approach for model-driven generation of
blockchain-based registries, we used Regerator to build a metadata registry in-
spired by the Comprehensive Knowledge Archive Network (CKAN!!). We popu-
lated this example registry with metadata taken from data.gov.au. We discuss
some design considerations from the implementation, and discuss transaction
cost below.

4.1 CKAN

CKAN is a web-based open-source data registration system, which provides func-
tionalities to streamline publishing, sharing, finding, and using of data. CKAN
has been used by public institutions and governments to open their data to the
general public, e.g. data.gov.au and data.gov.uk.

The central entity type in CKAN is a package. A package defines a variety of
metadata of datasets, such as name, description, license, and tags. CKAN also
supports an unlimited amount of customized metadata in the form of key/value
pairs. The relationships between packages can be defined, such as depends on,
child of, and derived from. Another entity type in CKAN is resource, which
represents the raw data in the dataset, such as files or APIs. A package can be
associated with multiple resources.

4.2 Implementation

We modelled elements of CKAN’s metadata schema using Regerator, and gen-
erated a blockchain-based registry system for the metadata of datasets. One
architectural decision to be made is either to manage one entity as part of the
attributes of another entity or to model both entities as separate registries. For
the first choice, the nested entity will not have a unique, identifiable ID. As for
the second choice, Foreign Key references between them need to be defined in
order to encode the relationship and both the entities can be uniquely identified.
For the entity to be modelled as registry, another architectural decision to be
made is either to model the entity as a ‘single’ registry or a ‘distributed’ registry.
The factors to consider include the complexity of the data structure, the nature
of the relationship between entities (coupling), and the cost of deploying and
executing the registries on blockchain.

" http://ckan.org/

data.gov.au
data.gov.au
data.gov.uk
http://ckan.org/

In the case of CKAN, there are potentially three entities that could be im-
plemented as separate registries, including package, resource, and organization.
Although resources are associated with a package, a resource is also a indepen-
dent entity with its own metadata and can be managed separately. Thus, we
have decided to record resources in a separate registry. Finally, organization is
implemented as a separate registry that groups the address of all the users from
the same organisation. The organisation registry can be used to define access
control, akin to Role-based Access Control.

4.3 Example Data

After implementing the blockchain-based registry, we queried the metadata of
all the datasets from data.gov.au'?, and added that into our registry, to test
the feasibility of our approach. Information about the number of each entity and
the collected fields are shown as below.

— Organization(533): name, jurisdiction, spatial_coverage, email, telephone, website

— Package(33810): name, owner_org, license_id, contact_point, spatial_coverage, tem-
poral_coverage

— Resource(64147): name, url, package-id, format, hash, size

During the metadata import, we collected data about the blockchain cost
as gas consumed (i.e. transaction execution cost) for deploying a registry and
adding a record to the registry. We use this information to calculate the monetary
cost of using blockchain as metadata repository according to the cost model [5].
Table 1 reports the cost for the different design options (‘single’ or ‘distributed’
registry). The data also shows how different architectural decision can affect the
cost of deploying and executing the registry. We assume the gas price is 5 x 1078
Ether (the default gas price of Homestead as of January 2016'3) and the price
of Ether is US$10 per Ether as of November 2016.

Table 1. Cost of using blockchain

Registry deployment Record creation (average)

Entity Gas cost Real cost Gas cost Real cost

Single Distr Single Distr Single Distr Single Distr

Organization 1836926 2542604 US$0.92 US$1.27 183266 931179 US$0.09 US$0.47
Package 1836926 2542540 US$0.92 US$1.27 340022 1090174 US$0.17 US$0.55
Resource 1777127 2548455 US$0.89 US$1.27 302041 1065760 US$0.15 US$0.53

4.4 Discussion

Impact of architecture design on cost. On the Ethereum blockchain, the
cost of creating a registry contract is comprised of fixed costs and variable costs.

12 Retrieved at 2017-03-07 15:59:32 AEST (+10)
3 https://github.com/ethereum/homestead-guide/blob/master/source/
contracts-and-transactions/account-types-gas-and-transactions.rst

data.gov.au
https://github.com/ethereum/homestead-guide/blob/master/source/contracts-and-transactions/account-types-gas-and-transactions.rst
https://github.com/ethereum/homestead-guide/blob/master/source/contracts-and-transactions/account-types-gas-and-transactions.rst

Fixed costs are the base amount for the transaction itself and the cost for allocat-
ing an address on the blockchain. Variable costs are affected by the architectural
design of the registry contract, for example, the cost of data payload. Similarly,
the cost of adding records to a registry is also comprised of a fixed cost for the
transaction itself, and some variable costs including for the data payload and to
execute the functions defined in the registry contract.

In contrast to existing practice, using a public blockchain means that adding
a record costs real money. However, the blockchain ecosystem will retain this
data indefinitely as long as the blockchain exists, at no additional cost. The
most costly field (with the biggest size) of both package and dataset in our
experiment was “description”, which amounted to approx. 85% of the total cost
if included on blockchain. If it is not of high importance to store this information
on-chain, storing it off-chain could significantly reduce the cost.

Interoperability. In the ecosystem of CKAN, the datasets in different CKAN
repositories refer to each other through importing the metadata from the referred
repository to the primary repository and transferring it to the correct format
due to the customer-defined fields. Regerator allows references to be defined as
foreign keys.

5 Conclusion

The model-driven approach is well established, and we show how it can be used
for blockchain-based systems. The Regerator system allows users to configure
a registry model in a browser-based application and to automatically generate
and deploy smart contract code implementing the registry on a blockchain. In
addition, Regerator can also create user interfaces and RESTful APIs. Execu-
tion cost for a generated registry is affected by architectural options represented
within the registry model, and we have explored this through experiments on
the Ethereum blockchain. The cost model for blockchains is different from con-
ventional (cloud or in-house) servers, because data is retained indefinitely at no
additional cost. In future work, we plan to explore model-driven generation of
functions for access control and registry inter-relationships.

References

1. L. Anderson, R. Holz, A. Ponomarev, P. Rimba, and I. Weber. New kids on the
block: an analysis of modern blockchains. CoRR, abs/1606.06530, 2016. http:
//arxiv.org/abs/1606.06530.

2. P. Downey. The characteristics of a register, 2016. https://gds.blog.gov.uk/
2015/10/13/the-characteristics-of-a-register/.

3. S. Omohundro. Cryptocurrencies, smart contracts, and artificial intelligence. ATl
Matters, 1(2):19-21, Dec. 2014.

4. M. Swan. Blockchain: Blueprint for a New Economy. O’Reilly, US, 2015.

5. G. Wood. Ethereum: A secure decentralized generalised transaction ledger — home-
stead draft. Technical report, 2016.

http://arxiv.org/abs/1606.06530
http://arxiv.org/abs/1606.06530
https://gds.blog.gov.uk/2015/10/13/the-characteristics-of-a-register/
https://gds.blog.gov.uk/2015/10/13/the-characteristics-of-a-register/

	Regerator: a Registry Generator for Blockchain

