
Caterpillar: A Blockchain-Based Business
Process Management System

Orlenys López-Pintado1 and Luciano Garćıa-Bañuelos1 and Marlon Dumas1

and Ingo Weber2

1 University of Tartu, Estonia
Orlenys.Lopez.Pintado@tudeng.ut.ee, {luciano.garcia,marlon.dumas}@ut.ee

2 Data61, CSIRO, Australia
Ingo.Weber@data61.csiro.au

Abstract. This demonstration introduces Caterpillar, an open-source
Business Process Management System (BPMS) that runs on top of the
Ethereum blockchain. Like any BPMS, Caterpillar supports the creation
of instances of a process model (captured in the Business Process Model
and Notation – BPMN) and allows users to track the state of process
instances and to execute tasks thereof. The specificity of Caterpillar is
that the state of each process instance is maintained on the Ethereum
blockchain, and the workflow routing is performed by smart contracts
generated by a BPMN-to-Solidity compiler. The compiler supports a
wide array of BPMN constructs, including user, script and service tasks,
parallel and exclusive gateways, subprocesses, multi-instance activities
and event handlers. The target audience of this demonstration includes
researchers in the area of business process management and blockchain
technology.

1 Introduction

Blockchain platforms such as Ethereum3 allow a set of actors to maintain a ledger
of transactions without relying on a central authority and to deploy scripts that
can be called by external actors to change the state of the ledger. These features
provide basic building blocks for executing collaborative business processes be-
tween mutually untrusting parties [4, 1]. However, implementing business pro-
cesses using the low-level primitives provided by blockchain platforms is cumber-
some. In contrast, established Business Process Management Systems (BPMS)
provide convenient abstractions for rapid development of process-oriented ap-
plications, by taking as starting point a business process model represented for
example in the Business Process Model and Notation (BPMN) [3].

This demonstration paper introduces Caterpillar, an open-source BPMS de-
signed from the ground up, with the aim of combining the development con-
venience of a BPMS with the tamper-proofness of a blockchain platform. Like
most contemporary BPMSs, Caterpillar supports the creation of instances of a

3 https://www.ethereum.org/



2 López-Pintado et al.

BPMN process model and allows managers and process workers to track the
state of process instances and to execute tasks thereof. The specificity of Cater-
pillar is that the execution state of each process instance is maintained on the
Ethereum blockchain and the workflow routing is performed by smart contracts
generated by a BPMN-to-Solidity compiler [4] covering a large array of BPMN
constructs, including subprocesses, multi-instance activities and event handlers.

Modeling
tools

Compilation
tools

Execution
engine

Work item
manager

Solidity
compiler

Models

Metadata

Service
interfaces Instance registry

(contract addrs)
WI mgr registry
(contract addrs)

Event
monitor

Execution
panel

Ethereum client
(e.g. geth)

Ethereum RPC
(via web3.js)

Fig. 1. Architecture of Caterpillar

The architecture of Caterpillar is presented in Fig. 1. The core of Caterpil-
lar consists of the modules inside the dashed rectangle, namely the Compiler
Tools, the Execution Engine, the Event Monitor, the Work Item Manager and
repositories for process models, metadata, service interfaces and runtime data
(specifically, process instance data and work item data).

The Compilation Tools module implements a comprehensive mapping from
BPMN to Solidity. Given a BPMN model (in standard XML format), this module
generates a smart contract (in Solidity), which encapsulates the workflow routing
logic of the process model. Specifically, the smart contract contains variables to
encode the state of a process instance, and scripts to update this state whenever
a task completes or an event occurs. Caterpillar supports not only basic BPMN
control flow elements (i.e. tasks and gateways), but also includes advanced ones,
such as subprocesses, multi-instances and event handling. The Compilation Tools
module is linked to a Modeling Tool, developed on top of Camunda’s BPMN
modeler.4

Caterpillar’s Execution Engine provides operations to deploy a process model
(i.e. to deploy the smart contracts generated by the Compilation Tools), to create
instances of a deployed process model, to determine which tasks are enabled and
to control and record their execution. The execution engine is also responsible
for executing automated script tasks and for triggering external service calls
whenever a service task is enabled. The Event Monitor listens to events generated
by the blockchain and generates notifications whenever a transaction related

4 https://camunda.org/download/modeler/



Caterpillar: A BPMN-based BPMS for Ethereum 3

to a process instance is validated on the blockchain, so as to keep the other
Caterpillar components updated. Caterpillar also provides a default Execution
Panel (to create and track process instances) and a default Work Item Manager
(to handle user tasks). The functionality of the Caterpillar engine is exposed via
a REST API, allowing developers to implement their own execution panel or
work list handler instead of using the default ones.

All core modules are implemented in Node.js and rely on standard Ethereum
tools to compile the smart contracts (specifically using the Solidity compiler solc)
and to interact with running instances of the smart contracts via an Ethereum
peer node (specifically using the Ethereum client geth).

2 Caterpillar Engine and REST API

Caterpillar’s Engine provides a REST API that exposes three types of resources:
models, that is BPMN models and compilation artifacts; processes, referring to
the set of currently running process instances; and services, i.e. references to
smart contracts and addresses used for interacting with external services. Ta-
ble 2 shows the mapping of resource-related actions with the corresponding core
module: white background for compilation tools, blue background for execution
engine and yellow background for work item manager.

Verb URI Description
POST /models Registers a BPMN model (Triggers also code generation and

compilation)
GET /models Retrieves the list of registered BPMN models
GET /models/:mid Retrieves a BPMN model and its compilation artifacts

POST /models/:mid Creates a new process instance from a given model
GET /processes/:pid Retrieves the current state of a process instance

POST /workitems/:wimid/:wiid Checks-in a work item (i.e. user task)
POST /workitems/:wimid/:evname Forwards message event, delivered only if the event is enabled

POST /services Registers an external service
GET /services Retrieves the list of registered external services
GET /services/:sid Retrieves smart contract/address of an external service

Table 1. Caterpillar’s REST API

Once the caterpillar core is running, a user can submit a BPMN model using
an HTTP POST request on the URI /models with a JSON message that includes
the model name and the model serialized in the BPMN 2.0 XML format. To
enable the process to interact with external services, a corresponding smart
contract/address must have been previously registered using an HTTP POST
request on /services. This is required because the service’s smart contract
address is compiled into the process’s smart contract.

A new instance of a process can be created using an HTTP POST request
on the URI /models/:mid, where :mid is the identifier provided when the pro-
cess model was registered. As a result of this request, Caterpillar will return a
hyperlink that refers to the newly created process instance in the HTTP header
Location and an HTTP status 201. Such a hyperlink would have the form



4 López-Pintado et al.

/processes/:pid, where :pid corresponds to the address assigned by Ethereum
to refer to the instance of the process’ smart contract.

At any time, the state of a process instance can be queried by using an
HTTP GET request on the URI /processes/:pid. From here, external actors
can obtain the hyperlink to execute a User Task – if enabled. This execution
occurs using an HTTP POST request on the URL /workitems/:wimid/:wiid.
Note that the request is going to a workitems component which validates the
user access rights before forwarding the call to the process instance contract.

Fig. 2. User task in
execution panel

The execution panel illustrates graphically the results
of querying the state of a process instance and also allows
the execution of user tasks by external actors. Here, every
enabled task is visualized in dark green, while activities
in execution are drawn in light green. A user may start
the execution of an enabled task by clicking on it and
submitting the required parameters, as shown in Fig. 2.
Only user tasks and catching messages are drawn in the
execution panel, because the execution of other types of
BPMN elements (e.g. gateways, throwing events, script
tasks, etc.) is started internally by Caterpillar. For the
demo, we will also use the debug information printed by
Caterpillar in the terminal to keep track of internal ac-
tivity (e.g. execution of script tasks) and interaction with
external services.

3 Maturity

Caterpillar is in its first release. However, the prototype extends and consolidates
ideas presented in previous works [4, 2], with the aim of better aligning the archi-
tecture of the BPMS with that of Ethereum. The current version of the prototype
supports the following elements in the standard BPMN 2.0: user tasks, service
tasks, script tasks, exclusive gateways, parallel gateways, event-based gateways,
embedded subprocesses, event subprocesses, call activities, parallel and sequen-
tial multi-instance activities. Additionally, it provides advanced event handling
with support to interrupting and non-interrupting events of type message, error,
escalation, signal and terminate, as per the standard semantics.

4 About the Demo

For the demo, we will use the simplified model of a loan assessment process
shown in Fig. 3. To make the models executable, some code needs to be added,
including: process variable definitions, solidity code for script tasks, and code
specifying the exchange of information from/to user/service tasks. For example,
one must specify the information an applicant must provide via the task Enter
loan information. This is done by writing the following snippet in the BPMN
documentation element under this task:



Caterpillar: A BPMN-based BPMS for Ethereum 5

(uint monthlyRevenue, uint loanAmount, uint propertyReferenceNumber) : (uint montlyRevenue,
uint loanAmount, uint propertyReferenceNumber) − > {montlyRevenue = montlyRevenue;

loanAmount = loanAmount; propertyReferenceNumber = propertyReferenceNumber; }

This snippet specifies that an applicant must provide the loan information, e.g.
via a web form as shown in Fig. 2. The second part of the snippet is used to
generate code that copies the information into process variables. Similar snippets
are associated to the remaining tasks of the process model.

Assess Loan 
Risk

Appraise 
Property

Assess 
Elegibility

Confirmation 
request sent

Confirm 
Acceptance

Loan app rejected

Loan app 
accepted

Enter Loan 
Application

Fig. 3. Simplified loan assessment process model

5 Source Code and Screencast

The source code of Caterpillar can be downloaded under the BSD 3-clause “New”
or “Revised” License from https://github.com/orlenyslp/Caterpillar.5

Caterpillar’s code distribution contains three folders: (i) folder caterpillar core,
which includes the implementation of the core components (engine, compilation
tools, event monitor and work item manager); (ii) execution panel (implemen-
tation of the Execution Panel module); and (iii) services, which contains the
implementation of the external services used in the demonstration. The repos-
itory contains all instructions needed to install the required dependencies and
running the sample process model.

A screencast of Caterpillar can be found at https://youtu.be/zOmx5kD1Og0 .

References

1. Jan Mendling et al. Blockchains for business process management - challenges and
opportunities. CoRR, abs/1704.03610, 2017.

2. L. Garćıa-Bañuelos, A. Ponomarev, M. Dumas, and I. Weber. Optimized Execution
of Business Processes on Blockchain. In BPM 2017, LNCS. Springer, 2017.

3. Object Management Group. Business Process Model and Notation, version 2.0.
http://www.omg.org/spec/BPMN/2.0/.

4. I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev, and J. Mendling.
Untrusted Business Process Monitoring and Execution Using Blockchain. In BPM
2016, LNCS 9850, pages 329–347. Springer, 2016.

5 The fourth author was not involved in the development or release of the Caterpillar
software. Neither the publication of this paper nor the software release should be
construed as granting any rights in relation to patents or patent applications held
by CSIRO or by the authors of this paper.


