
Predicting Latency of Blockchain-Based Systems
Using Architectural Modelling and Simulation

Rajitha Yasaweerasinghelage, Mark Staples, and Ingo Weber
Data61, CSIRO, Level 5, 13 Garden St, Eveleigh NSW 2015 Australia

School of Computer Science and Engineering, University of New South Wales, NSW 2052 Australia
Email: 〈firstname〉.〈lastname〉@data61.csiro.au

Abstract—Blockchain is an emerging technology for sharing
transactional data and computation without using a central
trusted third party. It is an architectural choice to use a
blockchain instead of traditional databases or protocols, and this
creates trade-offs between non-functional requirements such as
performance, cost, and security. However, little is known about
predicting the behaviour of blockchain-based systems. This paper
shows the feasibility of using architectural performance modelling
and simulation tools to predict the latency of blockchain-based
systems. We use established tools and techniques, but explore new
blockchain-specific issues such as the configuration of the number
of confirmation blocks and inter-block times. We report on a lab-
based experimental study using an incident management system,
showing predictions of median system level response time with a
relative error mostly under 10%. We discuss how the approach
can be used to support architectural decision-making, during the
design of blockchain-based systems.

Index Terms—Software architecture, Software performance,
Distributed databases.

I. INTRODUCTION

Blockchain is an emerging technology providing a shared
distributed ledger of transactions, letting participants interact
without relying on a central trusted third party. A blockchain
can be used as a database, or as a software connector [1],
and smart contracts [2] on blockchain allow programmable
business logic or conditional transactions [3].

Blockchains have limitations, including latency. In a
blockchain that use Nakamoto consensus (longest chain
wins) [4], it may take seconds (Ethereum) or minutes (Bitcoin)
for a transaction to be included in a block. These transactions
are never absolutely committed, but increasing confidence of
this is provided by subsequent blocks, known as confirmation
blocks. The latency for initial inclusion of a transaction in a
blockchain is higher than in traditional systems, and a large
number of confirmation blocks will multiply this delay. La-
tency can also be impacted by network delays, the transaction
fee offered, the number of transactions being processed, and
strategic decisions made by miners. So, transaction inclusion
times can vary widely.

Although longer than in conventional systems, this may be
acceptable for some use cases, if the other potential benefits
of blockchain can be achieved, such as decentralised trust.
Nonetheless, it will still be important to be able to accurately
predict system-level latency during design, to assess whether
requirements can be met.

Previously, Xu et al. [1] explored using blockchains as
connectors in blockchain-based systems. Weber et al. [3] has
showed how they could be used as neutral ground for the
model-driven execution of business processes (BPs). This ap-
proach allows the integration of organisations without a trusted
central coordinating authority. Off-chain ‘trigger’ components
bridge between blockchain smart contracts and enterprise
systems. The triggers manage keys, manage enterprise API
calls, and can interact with external services and databases.
The smart contracts execute the core BP logic, and perform
some framework logic, such as for monitoring. Our latency
experiments are on the same incident management exemplar
for this approach as used by Weber et al. [3].

Architectural models can be used to predict non-functional
properties including latency, throughput, resource usage, and
cost. Predictions can be made using analytical solvers or
simulation engines [5]. In this paper, we use this approach
to simulate blockchain-based BPs to predict latency. We use
the Palladio workbench [6] as a modelling tool as it is freely
available, supports architectural simulation, has a ‘UML-like’
interface for model construction, and has proven flexibility
for extensions such as architectural optimisation [7] and new
qualities [8]. The modelling concepts are well-aligned with
component-based development and support the re-use of con-
structed models and components.

A long version of this paper is available as a technical
report, which provides many additional details, background,
and discussion [9]. The remainder of this paper starts with
our approach for modelling and benchmarking transaction
latency in blockchain-based systems. The accuracy of system-
level predictions from this model is evaluated in Section III.
Section IV explores the use of our approach for architectural
decision making. We discuss some blockchain-specific mod-
elling issues and future work in Section V, before concluding.

II. PERFORMANCE MODEL CONSTRUCTION

We describe benchmarking transaction inclusion times for
blockchain, and our approach for system-level modelling.

A. Benchmarking Transaction Inclusion on Blockchain

A key parameter for our model is the transaction commit
time: the time taken from submitting a transaction until
we have sufficient confidence that it has been included in
the blockchain. If one block is enough confirmation, we



call this transaction inclusion time instead. Our benchmark
measurement abstracts over blockchain-related details which
affect latency, to create an overall transaction inclusion time
distribution for our model. Our benchmark measurements
also include latency overhead for our trigger code and the
communication between the trigger and the blockchain node.

To demonstrate the approach, we ran benchmarks on a
private Ethereum blockchain. This was to prevent flooding the
public Ethereum blockchain, to reduce cost, and to be able to
vary inter-block time. We used one virtual machine to deploy
the trigger and a go-Ethereum (Geth) full node with mining
disabled. The mining node was deployed on a different virtual
machine. This situation would mimic practical deployment to
some degree: each organisation would deploy their own full
node and trigger in a virtual machine controlled by them,
whereas miner node is operated on separate machines.

To benchmark latency, we submitted transactions as fol-
lows. A script invoked the trigger API, which submitted the
transaction. The trigger then watched the blockchain for a
sufficient number of confirmation blocks after observing a
block including the transaction and returned the result to the
script. The script then initiated the next transaction.

In our experiments we varied inter-block time, by con-
trolling the complexity mechanism or leaving at its default
(uncontrolled). The mean inter-block time of the uncontrolled
blockchain was 13.6s, in two settings of controlled private
blockchain settings, we measured mean inter-block times of
2.3s and 6.3s. For each of the three settings, we measured
transaction inclusion time across 1000 transactions. The me-
dian transaction inclusion times were 6.91s, 14.65s, and 25.8s
respectively for mean inter-block times of 2.3s, 6.3s, and 13.6s.

B. Blockchain-Based System Performance Modelling

We model the blockchain from the perspective of the
client application, as a component. So, we do not model
the blockchain mining network, node communication, or con-
sensus algorithm. These are rolled up in our model and
measurements. Client applications interact with the blockchain
through a local node. We model the resource and performance
characteristics of this node as a component. In the architecture
of a scalable client application, one may need to operate
multiple blockchain nodes, each independently participating in
the blockchain system; in such cases, we would model those
as multiple deployed instances of the blockchain client.

1) Component Repository Model: In Weber et al.’s [3]
method, off-chain business systems interact with the
blockchain through trigger components. We modelled triggers
and Ethereum nodes as two components each exposing a
relevant interface. In a Palladio Component Model (PCM),
component operations are specified in an interface. The trigger
interface provides operations for each BP action. The trigger
interface also provides a createInstance operation, which cre-
ates an instance of a BP monitor by invoking a factory smart
contract, pre-configured on the blockchain. The trigger trans-
lates API calls into corresponding blockchain transactions,
whose execution is initiated by the local Ethereum node.

2) Resource Demanding Service Effect Specifications:
After modelling the components, interfaces, and their rela-
tionships, we then model the non-functional behaviour of
component operations in PCM as effect specifications. Each
operation translates an API call to a blockchain transaction
and uses an external action to forward the transaction to the
blockchain node. The resource utilisation of each component
is configured as a probability distribution function (PDF)
constructed using benchmarks as described in Section II-A.
For manual process steps, operator resolution time must be
separately benchmarked, but this is not dealt with in this paper.

3) Usage Model: To simulate execution of the system, we
model its representative use and points of variation. This usage
model reflects process flow in our example BP, and the points
of variation are optional branches of the process. For the
purpose of our laboratory experiments, we assumed that at
each stage of incident response (except for the final developer
stage), 75% of issues received were resolved in that stage. The
final developer support stage resolves every request.

III. EVALUATING SYSTEM-LEVEL LATENCY PREDICTIONS

We evaluate the prediction accuracy of our performance
model using an exemplar BP system, by comparing simu-
lation predictions with macro-level measurements. We used
the same private Ethereum environment as for the micro-level
benchmarking (Section II-A). However, rather than measur-
ing latency for individual transaction inclusion, we compare
latency over entire BP execution instances to our predictions.

A. Incident Management Business Process Implementation

We reuse the incident management system from our previ-
ous work. [3] Trigger component connect the BP executing on
blockchain to enterprise systems. The trigger manages keys,
keeps track of the data payload in API calls, and interact with
external databases or web services. When a customer submits
an issue, the trigger creates a smart contract instance. Other
actors can interact with this smart contract instance via the
trigger. The trigger updates the status of the process by sending
transactions via a blockchain node to that instance, and keeps
track of the process. When the transaction is included in a
block that is confirmed by a pre-decided number of blocks, the
system considers the action to have successfully completed.

B. Experiment Setup

We generated a synthetic workload for the complete sce-
nario. An separately-deployed python script invoked trigger
operations using HTTP requests and measured the time delay.
The experiment was run 1000 times (created 1000 process
monitor instances) and executed for approximately 20 hours.
The SimuCom simulation engine was used to execute the PCM
model, also for 1000 scenario executions.

C. Comparing Measurement and Simulated Results

The measured and predicted latency distributions are shown
in a cumulative density graph in Fig. 1. The cumulative
distribution is informative as it shows the percent of process



0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600

Pe
rc
en
til
e	
(%
)

Process	level	latency	(s)

Measured

Simulated

Fig. 1. Scenario latency – Cumulative distribution

executions under specific times. As seen in Fig. 1 the cumu-
lative distribution highly coincides with the results from the
benchmark. The simulation predicted the mean latency of the
process scenario with a relative error of 1.6%. The measured
mean latency was 136.29s and predicted was 134.08s, with a
standard error of mean (SEM) of 1.27 and 1.07 respectively.

Further statistical measures are illustrated as boxplot dia-
gram in Fig. 2a. For many applications, 95% and 99% per-
centiles are useful measures when considering the latency and
the skewness of the distribution. The PCM model predicted
the 95% and 99% percentiles with a relative error of 9.4% and
11.5% accuracy. Error in predicted maximum and minimum
are respectively 7.62% and 16.89%.

IV. ARCHITECTURAL DECISION MAKING

Design alternatives can be evaluated by predicting latency
in example scenarios. This lets us explore what-if questions
in architectural decision making. Xu et al. [1] have discussed
blockchain system design alternatives, and the impact of de-
sign decisions on quality attributes. Here we focus on latency.

A. Choice of Inter-Block Time

In a public blockchain, the target inter-block time is fixed.
However, in private blockchains, it can be varied as a de-
sign choice. This reduces transaction inclusion time, which
can reduce system-level latency. When evaluating inter-block
time alternatives, we use the same models, but modify the
transaction inclusion time parameter.

We conducted an experimental evaluation of the accuracy
of our simulation for various transaction inclusion times, on a
private blockchain. The results are shown as boxplots in Fig. 2.

For the default inter-block time of 13.6s, the measured
and simulated median process latency was 132s and 130.93s
respectively. For inter-block times of 6.3s and 2.3s, the median
measured latencies were 64.7s and 28.1s, and the median
simulated latencies were 71.1s and 30.7s respectively. The
relative errors of median were 1.4%, 9.6%, and 9.4%, while
the relative error of 95th percentiles were 14.6%, 8.5%, and
0.7% respectively.

B. Choice of Number of Confirmation Blocks

The vulnerability of blockchain-based systems to double-
spending attacks can be reduced by increasing the number of
confirmation blocks [10]. This introduces additional latency
to the system. We measured the transaction commit time with
6 and 12 blocks separately and populated the model as men-
tioned above. We ran a separate experiment for benchmarking
the latency of the BP with 1, 6, and 12 confirmation blocks.
The results are illustrated as boxplot diagrams in Fig. 3.

We used a controlled blockchain for this experiment with
mean inter-block time of approx. 2.3s. The measured median
process latencies with 1, 6, and 12 blocks confirmation were
28.1s, 81.5s, and 152s respectively while the simulation pre-
dicted 30.7s, 81.7s, and 164s. The relative errors of median
predictions were 9.4%, 0.2%, and 0.2% and the relative errors
of 95th percentiles were 8.5%, 6.7%, and 12.3% respectively.

C. Process Level Changes

It is straightforward to use architectural performance models
to evaluate process-level changes. In our approach, the process
is defined by the Palladio usage model. Performance models
can also be useful for estimating the impact on latency of
process redesign [11] such as task elimination, process inte-
gration, or task composition. These are modelled by changing
the workflow. Most of the BP control flow patterns [12] can
be directly translated to Palladio component model patterns.

We experimented with a changed process model, where
the account manager assigns issues directly to second-level
support (skipping the first level) in 5% of cases. We used a
private Ethereum blockchain with a mean inter-block time of
2.3s. The results are shown in Fig. 4. The median process
latency was measured as 26.8s, vs. simulation as 27.6s. The
relative error of median was 2.9% and the relative error of
95th percentile was 0.3%.

V. DISCUSSION AND FUTURE WORK

The transaction inclusion-time benchmarks reported in Sec-
tion II are not intended to be generalisable. Instead, they
illustrate our approach to benchmarking to configure a perfor-
mance model. In particular, our laboratory experiments were
performed on a private deployment of Ethereum with only one
mining node. This means that there are no significant network
delays for transaction or block propagation among peers,
and there is no occurrence of uncles (short-lived competing
alternate histories). Uncles can affect transaction inclusion
time. We recommend benchmarking end-to-end latency in the
target blockchain platform in order to account for all sources
of variation and delay.

The off-chain portion of a system can be modelled conven-
tionally. Our approach reuses standard modelling functionality,
so all components can appear in the same model. This can aid
visualisation and improve understanding [7].

Component and hardware cost can be modelled for
blockchain-based systems in a conventional way [7]. How-
ever, blockchain-based systems have other costs including gas
cost for executing smart contracts and transaction fees. It is



Measured Simulated
0

100

200

300

400

500

600

la
te

n
cy

 (
s)

(a) For 13.6s average inter-block time: median
time (measured 132s, simulated 130s), relative
error (median 1.4%, 95th percentile 14.6%)

Measured Simulated
0

100

200

300

400

500

600

la
te

n
cy

 (
s)

(b) For 6.3s average inter-block time: median
time (measured 64.7s, simulated 71.1s), relative
error (median 9.6%, 95th percentile 0.7%)

Measured Simulated
0

100

200

300

400

500

600

la
te

n
cy

 (
s)

(c) For 2.3s average inter-block time: median
time (measured 28.1s, simulated 30.7s), relative
error (median 9.4%, 95th percentile 8.5%)

Fig. 2. Boxplot diagrams of measurement and simulated results for transaction inclusion time under various inter-block times.

Measured Simulated
0

50

100

150

200

250

300

350

400

450

la
te

n
cy

 (
s)

(a) 1 confirmation block: median time (mea-
sured 28.1s, simulated 30.7s), relative error (me-
dian 9.4%, 95th percentile 8.5%)

Measured Simulated
0

50

100

150

200

250

300

350

400

450

la
te

n
cy

 (
s)

(b) 6 confirmation blocks: median time (mea-
sured 81.5s, simulated 81.7s), relative error (me-
dian 0.2%, 95th percentile 6.7%)

Measured Simulated
0

50

100

150

200

250

300

350

400

450

la
te

n
cy

 (
s)

(c) 12 confirmation blocks: median time (mea-
sured 152s, simulated 164s), relative error (me-
dian 0.2%, 95th percentile 12.3%)

Fig. 3. Boxplot diagrams of measured and simulated confirmation time for varying numbers of confirmation blocks. Average inter-block time was 2.3s.

Measured Simulated
0

20

40

60

80

100

120

140

160

la
te

n
cy

 (
s)

Fig. 4. Measured and simulated latency of modified BP. Median time (meas.
26.8s, sim. 27.6s), relative error (median 2.9%, 95th percentile 0.3%).

possible that these might be modelled as passive resources, We
expect simulation-based approaches for cost modelling to help
understand the differences in the cost model for blockchains
compared to conventional systems.

VI. CONCLUSION

In this paper, we have proposed and evaluated an approach
for predicting the latency of blockchain-based systems using
architectural performance modelling and simulation. For an
illustrative experimental system in a laboratory environment,
our predictions had a relative error of mostly under 10%. We
further demonstrated the capability of using these performance
models to support evaluation of design alternatives that would
be encountered in architectural design. Some of these deci-
sions are about blockchain-specific issues, such as inter-block
time or the number of confirmation blocks. Some decisions
about a blockchain-based system may be about system-level
design options but are impacted by latency arising from the
blockchain-related factors. The proposed architectural models

also provide a basis for future research into optimal system
configuration, cost, and other non-functional properties. Many
additional details can be found in our technical report [9].

REFERENCES

[1] X. Xu, C. Pautasso, L. Zhu, V. Gramoli, A. Ponomarev, A. B. Tran,
and S. Chen, “The blockchain as a software connector,” in Proc. 13th
Working IEEE/IFIP Conf. on Software Architecture (WICSA), 2016.

[2] S. Omohundro, “Cryptocurrencies, smart contracts, and artificial intelli-
gence,” AI matters, vol. 1, no. 2, pp. 19–21, 2014.

[3] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev, and
J. Mendling, “Untrusted business process monitoring and execution
using blockchain,” in Intl. Conf. Business Process Mgmt. (BPM), 2016.

[4] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[5] A. Brunnert, A. van Hoorn, F. Willnecker, A. Danciu, W. Hassel-

bring, C. Heger, N. Herbst, P. Jamshidi, R. Jung, J. von Kistowski
et al., “Performance-oriented devops: A research agenda,” arXiv preprint
arXiv:1508.04752, 2015.

[6] S. Becker, H. Koziolek, and R. Reussner, “The Palladio component
model for model-driven performance prediction,” Journal of Systems
and Software, vol. 82, no. 1, pp. 3–22, 2009.

[7] T. De Gooijer, A. Jansen, H. Koziolek, and A. Koziolek, “An industrial
case study of performance and cost design space exploration,” in Proc.
SPEC Int’l Conf. on Performance Eng. ACM, 2012, pp. 205–216.

[8] F. Willnecker, A. Brunnert, and H. Krcmar, “Predicting energy con-
sumption by extending the Palladio component model,” in Symposium
on Software Performance, 2014, p. 177.

[9] R. Yasaweerasinghelage, M. Staples, and I. Weber, “Using architectural
modelling and simulation to predict latency of blockchain-based sys-
tems,” School of Computer Science and Engineering, UNSW Australia,
Tech. Rep. 201704, 2017.

[10] M. Rosenfeld, “Analysis of hashrate-based double spending,” arXiv
preprint, 2014. [Online]. Available: http://arxiv.org/abs/1402.2009

[11] H. A. Reijers and S. L. Mansar, “Best practices in business process
redesign: an overview and qualitative evaluation of successful redesign
heuristics,” Omega, vol. 33, no. 4, pp. 283–306, 2005.

[12] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros,
“Workflow patterns,” Distributed and Parallel Databases, vol. 14, no. 1,
pp. 5–51, 2003.

http://arxiv.org/abs/1402.2009

	Introduction
	Performance Model Construction
	Benchmarking Transaction Inclusion on Blockchain
	Blockchain-Based System Performance Modelling
	Component Repository Model
	Resource Demanding Service Effect Specifications
	Usage Model


	Evaluating System-Level Latency Predictions
	Incident Management Business Process Implementation
	Experiment Setup
	Comparing Measurement and Simulated Results

	Architectural Decision Making
	Choice of Inter-Block Time
	Choice of Number of Confirmation Blocks
	Process Level Changes

	Discussion and Future Work
	Conclusion
	References

