
Comparing Blockchain and Cloud Services for
Business Process Execution

Paul Rimba∗, An Binh Tran∗, Ingo Weber∗†, Mark Staples∗†, Alexander Ponomarev∗, Xiwei Xu∗†
∗ Data61, CSIRO, Sydney, Australia

† School of Computer Science and Engineering, UNSW, Sydney, Australia
Email: {firstname.lastname}@data61.csiro.au

Abstract—Blockchain is of rising importance as a techno-
logy for engineering applications in cross-organizational settings,
avoiding reliance on central trusted third-parties. The use of
blockchain, instead of traditional databases or services, is an
architectural choice in the development of a software system.
The costs of execution and storage are important non-functional
qualities, but as yet very little has been done to study them
for blockchain-based systems. We investigate the cost of using
blockchain using business process execution as a lens. Specifically,
we compare the cost for computation and storage of business
process execution on blockchain vs. a popular cloud service. First,
we capture the cost models for both alternatives. Second, we
implemented and measured the cost of business process execution
on blockchain and cloud services for an example business process
model from the literature. We observe two orders of magnitude
difference in this cost.

Index Terms—blockchain; cloud; business process; design; cost

I. INTRODUCTION

Blockchain is an emerging technology for software applic-
ations in cross-organizational settings. Blockchain provides
decentralized record-keeping and computation, and an altern-
ative to conventional use of central trusted parties. The use
of a blockchain, instead of a traditional database or service,
is an architectural choice. Previously, we explored using
blockchain as a connector in a software architecture [10].
We later demonstrated how a business process model can
be executed on the blockchain [8]. This allows the execution
of a cross-organizational business process without the need for
a trusted third-party, supports automatic payments and escrow,
and provides an immutable transparent log of past interactions.

Software architecture is concerned with trade-offs between
non-functional qualities in the design of software systems. Bass
et al. [1] describe many non-functional qualities for architecture,
including cost and scalability, and discuss the importance of
trade-off analyses. The (monetary) costs of execution and
storage are important non-functional qualities for systems, but
there is very little analysis of them for blockchain. Blockchains
enable decentralized trust in storage and execution, but may
bring trade-offs for execution cost and latency.

We investigate these issues in the business process context
to provide a uniform perspective. We previously [8] examined
latency when using blockchain for sending transactions during
business process execution and observed overall cost from
actual use. In this paper, we compare the (monetary) cost
implications of executing business processes on a blockchain
vs. a popular cloud service. Specifically, we capture the cost
models for business process execution on the public Ethereum
blockchain as well as Amazon Simple Workflow Service (SWF).
These cost models (Section III) can be used to estimate costs

under different workload and settings. To ensure they capture
actual cost, we implemented a process model for both platforms
and ran corresponding experiments (Section IV) to measure
actual cost. Analyzing these results, we also compare the cost
of business process execution on blockchain vs. cloud in our
experimental context, in which we observed that Blockchain
costs two orders of magnitude higher than SWF.

II. BACKGROUND

Blockchain and Smart contracts. Blockchain is a replicated
distributed ledger that verifies and stores transactions occurring
in a peer-to-peer network [6], [7]. A blockchain system does not
rely on the business operations of any central trusted authority.
Instead, its trustworthiness is derived from the blockchain
software and incentive mechanisms for processing nodes in
the network. The blockchain data structure is a timestamped
list of blocks. Blocks are containers aggregating transactions.
Every block is identifiable and linked to the previous block in
the chain through cryptographic hashes.

Smart contracts [5] are semi-autonomous programs running
on the blockchain. They can store and update variables, and
instantiate and invoke other smart contracts. Ethereum [9] is the
most widely used blockchain that supports a Turing-complete
scripting language (Solidity) for smart contracts. Trust in the
valid execution of the code arises from trust in the integrity of
the blockchain.

Blockchain for Business Process. In previous work [8], we
proposed a technique to translate models of collaborative
business processes – such as the one shown in Fig. 1 – to smart
contracts on Ethereum. This allows organizations to collaborate
without coordination from a mutually-trusted third-party: their
collaboration can be controlled on a neutral platform, the
blockchain.

We use blockchain to execute processes in two ways [8]: (i)
As a choreography monitor, the blockchain records the process
execution status for participants, while processing message
exchanges. Smart contracts check that interactions conform with
the model; (ii) As an active mediator among participants, the
blockchain coordinates collaborative process execution. Smart
contracts drive the process and perform data transformations.

Triggers connect the process executing on blockchain with
the external world. Smart contracts cannot directly interact
with the external world, so triggers instead interact with smart
contracts. For the purposes of this paper, each participant
operates their own trigger, within their own organizational
context, using a local blockchain node. Triggers monitor
execution of process instances. During execution, a trigger
translates API calls from its owner to smart contract invocations,

Incident Management as choreography

Customer Has a Problem

VIP customer

Key Account Manager

Get problem description

VIP customer

Key Account Manager

Ask 1st level support

Key Account Manager

1st level support agent

Ask 2nd level support

1st level support agent

2nd level support agent

Ask developer

2nd level support agent

Software developer

Provide feedback for 2nd
level support

Software developer

2nd level support agent

Provide feedback for 1st
level support

2nd level support agent

1st level support agent

Provide feedback for
account manager

1st level support agent

Key Account Manager

Explain solution

Key Account Manager

VIP customer

Key Account Manager can handle issue

1st level support resolved issue

2nd level support
resolved issue

Figure 1. Incident Management Case Study Workflow, adapted from [4, p.18]

and smart contract events to API calls. As such, they connect
enterprise systems with smart contracts executing processes.

Cost Analysis. Prior research on cost models and estimation
in software engineering research has mainly focused on the
cost of software development [2]. In contrast, we focus
on operational costs, i.e., monetary cost of execution under
different architecture choices.

III. COST MODELS

We describe models to estimate the cost of running business
processes on two different types of infrastructure. We use
Ethereum as a blockchain infrastructure and Amazon Simple
Workflow Service (SWF) as cloud infrastructure.

A. Blockchain (Ethereum) Cost Model

There are three types of transactions in Ethereum: financial
transfers, message calls, and contract creation. Each has the
following basic elements: from, to, gasLimit, value and
data. The from and to fields signify the sender and the
recipient of the transaction respectively. For a financial transfer
transaction, the amount transferred is given in the value field.
The data field is optional but can contain data in arbitrary
other forms. The fee for a transaction with attached data covers
the cost for storing the data permanently in the blockchain and
is proportional to the size of the data. A message call transaction
invokes a function of a contract, where the data field carries
the method to be invoked and the parameters. The gasLimit
is used to specify the maximum gas that can be used in this
transaction. Gas is paid for each bytecode instruction that is
executed. Finally, a contract creation transaction is indicated by
a to value of NULL, and data contains the contract bytecode.
For both message call and contract creation transactions, the
value field is optional.

We divide our cost model into two parts, one for deploying
smart contracts and one for executing process coordination. A
contract creation transaction includes compiled bytecode in the
data field, and the permanent storage of this data incurs cost.

When a contract is created, a particular Ethereum address
is subsequently used to interact with that contract. The costs
of contract creation are outlined by Wood [9]. We refer to
this cost as transactional cost, Ccreate. The contract creation
transaction costs 21,000 gas for the transaction itself (Ctx), plus
32,000 for allocating a new address (Caddr), plus the cost of
data payload (Cpload, the size of contract bytecode multiplied by
gas per byte) and plus any additional gas that is consumed by
the opcodes in the function definition (Cfndef

). We represent this

as a formula as shown in Equation 2. At the time of writing,
the cost of payload for contract bytecode is 200 gas per byte
while the cost of payload for data in a financial transaction
and message call is 68 per non-zero byte and 4 per zero byte.

Cpload = payload (in bytes)× Cgas/byte (1)

Ccreate = Ctx + Caddr + Cpload + Cfndef
(2)

In Ethereum, a contract can create another contract. This is an
internal transaction and is cheaper because internal transactions
do not incur Ctx. The cost of creating a new contract by an
existing contract, Ccreateinternal , is shown in Equation 3.

Ccreateinternal = Caddr + Cpload + Cfndef
(3)

The second part of our model concerns the cost for executing
the business process, and is summarized in Equation 4. A
coordination message is treated as a function call in Ethereum.
This costs 21,000 gas for the call itself, plus any additional gas
that is consumed by the opcodes present during the function
execution (Cfnexec) and the cost for the data payload.

Ccoord = Ctx + Cpload + Cfnexec
(4)

The costs calculated with Equation 2 and 4 are in gas.
In order to convert these costs into ether, which is the
digital currency in Ethereum, the total gas consumed must
be multiplied by the gas price in wei (one wei is 10−18

ether). Finally, the cost in ether can be converted into another
currency through an exchange service at some exchange rate,
EXCETH2CUR. We specify this in Equation 5.

Cin$ = CinGas × gasPrice× 10−18 × EXCETH2CUR (5)

Equations 2 and 4 are concerned with the setup and
coordination cost for blockchain. Note that, in the blockchain
setup, the interface VM operates a full node in the blockchain
network. As such, if the VM is not constantly online, the
required duration for this VM needs to include the time to
synchronize the blockchain with the network.

B. Amazon SWF Cost Model
For the Amazon Simple Workflow Service (SWF)1, more

usage will result in cheaper cost per unit. The main elements
are: workflow, actor, task, and signal. Workflows organise
activities performed by actors in a sequence. A workflow in
SWF represents an instance of a business process, while actors
play roles in the process. There are two different types of tasks:

1https://aws.amazon.com/swf/ and https://aws.amazon.com/swf/pricing/

https://aws.amazon.com/swf/
https://aws.amazon.com/swf/pricing/

Table I
BUSINESS PROCESS MAPPING TO SWF AND BLOCKCHAIN ELEMENTS

Business Process Blockchain Amazon SWF

Process Instance Instance Smart Contract Workflow
Conformance Checking Contract execution (partial) Decision task
Activity Contract execution (partial) Activity task
Incoming message Transaction Signal
Outgoing message Entry in contract event log Notification

activity and decision. Activities schedule a notification for
actors to proceed with the next activity. Decisions determine
whether the current state of execution conforms with the
workflow and which activity is next. A signal is an externally
triggered event. Table I shows the mapping of a business
process to elements of Blockchain and SWF.

Every actor in the business process implements its own
trigger program, which interacts with Amazon SWF through
API calls. Decision and Activity tasks require the actor to have
a running Amazon SWF worker module, operating on either
AWS EC2 or the actor’s infrastructure.

The total cost for SWF-based execution has several com-
ponents. The cost for workflow instances Cwf can be calculated
by multiplying the number of instances with the SWF cost of
starting a workflow execution (SWFwf) as in Equation 6.

Cwf = #wf× SWFwf (6)

The execution of activity tasks is done by the SWF worker,
discussed below. The cost for scheduling tasks, Ctask, is the
price per task (SWF task) multiplied by the sum of executed
activity tasks and decision tasks. See Eq. 7. Note, the number
of activities in a process instance is the number of SWF activity
tasks, whereas the number of decision tasks is that number
plus one additional decision task (immediately after the start
of the workflow instance).

Ctask = (#actTask +#decTask)× SWF task (7)

The number of signals is the number of activities in a
business process instance. The cost of signals, Csig, is the
number of signals by the price per signal, as in Equation 8.

Csig = #signals× SWF signal (8)

Data generated during workflow execution is stored by SWF
for a user-specified duration after completion (retT), charged per
24 hours. The workflow execution time (execT) is also charged
per 24 hours at the same rate (SWF ret). See Equation 9.
The cost of data transferred, Cdat, in and out during workflow
execution, is the total payload data size (payload) by cost per
data unit (SWFdata). See Equation 10.

Cret = (execT + retT)× SWF ret (9)

Cdat = payload× SWFdata (10)

The total cost of business process execution on Amazon
SWF is in Equation 11, and is the sum of Equations 6 to 10.

Cswf = Cwf + Ctask + Csig + Cret + Cdat (11)

Equation 11 is the coordination cost for SWF services and
does not include costs of VMs for triggers and SWF workers.

IV. EVALUATION

A. Experiment Setup, Datasets, and Methodology
The goal of this experiment is to compare the cost of business

process execution on Ethereum blockchain vs. Amazon SWF,
and to assess the accuracy and limitations of the Amazon SWF
and Blockchain cost models. We used a process for Incident
Management from the literature [4, p.18]. Fig. 1 shows the
process model, which has nine tasks, and six gateways. The
model has four conforming traces, all of which we use. Such a
process would be cross-organizational if, e.g., first-level support
was outsourced. The test instances for the process are read from
a message trace log file. For each log line, we send a message
to the respective actor’s trigger, which sends a transaction to
the blockchain or a signal to Amazon SWF.

Blockchain. For Incident Management, we reuse the results
from our previous work [8], with experiments on the public
Ethereum blockchain. Each actor maintains a local Ethereum
node, running the go-ethereum (geth) version 1.3.5. Each node
is connected to the public Ethereum blockchain and compiled
our smart contracts using Solidity compiler version 0.2.0 with
optimization enabled. We implemented the triggers in Node.js
using the Ethereum library web3 version 0.15.1.

Amazon SWF. For Amazon SWF, each actor was implemented
with a business process trigger in Java, using the AWS SDK
for Java version 1.11.13. This trigger calls the Amazon SWF
API to send signals to the Amazon SWF. We deployed the
trigger and SWF worker on an EC2 t2.micro VM.

B. Blockchain Results
For the Incident Management process, we reuse results

reported in [8]. In these experiments on public Ethereum,
we ran 32 process instances with a total of 256 transactions.
The factory contract deployment cost 0.032 Ether (approx.
US$ 0.36), and Incident Management instances, with data
transformations, cost on average 0.0347 Ether, or approx.
US$ 0.39. The exchange rate2 applied above was recorded
on 26/8/2016, where 1 ether was worth US$ 11.32. The
experimental data (transactions) for the experiment on the
public blockchain are publicly viewable at the factory contract’s
address, e.g. via Etherscan3.

C. Amazon SWF Results
In the SWF experiment, we created a new process instance,

i.e., SWF Workflow instance, for each run. On receiving a
signal, Amazon SWF schedules a decision task for the worker.
This checks the received signal for conformance with the
business process implemented in the workflow instance, to
progress the workflow state accordingly.

We deployed an EC2 t2.micro VM for the trigger and the
Amazon SWF task worker and executed process instances in
sequence. For each process instance, the initialization creates
a new workflow (instance) and a decision task to instruct
the workflow to wait for the first signal. For each additional
message, the trigger sends one signal which results in one
activity task and two decision tasks: the workflow schedules
a decision task each time it receives a signal or a completion
message from an activity task. Thus, for X process instances

2https://poloniex.com/exchange#usdt eth
3https://etherscan.io/address/0x09890f52cdd5d0743c7d13abe481e705a2706384

https://poloniex.com/exchange#usdt_eth
https://etherscan.io/address/0x09890f52cdd5d0743c7d13abe481e705a2706384

with a total of Y events, there are X workflows, Y −X signals
and activity tasks, and 2Y −X decision tasks.

In our experiment, we set both the data retention rate and
workflow execution to one day. The total cost for the experiment
with 1,000 process instances was US$0.925, resulting in an
average cost of US$0.000925 per process instance. If we
increased the data retention to 365 days, the cost per process
instance would be US$0.002745. Table II shows the cost
breakdown. The data transfer volume for Incident Management
was 358 MB, which is rounded up to 1GB.

Table II
AMAZON SWF COST BREAKDOWN — INCIDENT MANAGEMENT

Element elements in
experiment

Unit cost
(US$)

Total cost
(US$)

Decision Task 15,000 0.000025 0.375
Activity Task 7,000 0.000025 0.175
Signal 7,000 0.000025 0.175
Workflow 1,000 0.0001 0.1
Retention (24h) 1,000 0.000005 0.005
Exec time (24h) 1,000 0.000005 0.005
Data Transfer 1 0.09 0.09

D. Comparative Analysis
In the Incident Management process, executing one process

instance costs US$0.000925 on average on Amazon SWF. In
comparison, executing the same process instance on Ethereum
costs on average 0.0347 Ether, or approx. US$ 0.36, plus 0.032
Ether (US$0.36) as a one-time cost for deploying the factory
contract. Excluding the one-time factory contract deployment,
the cost per process instance on blockchain is currently two
orders of magnitude higher than on Amazon SWF. Blockchain
stores the result in perpetuity (as long as the blockchain is in
existence), while SWF has a 90-day limit on data retention. To
put the higher one-time cost for executing a process instance
on Ethereum into perspective with the ongoing cost for data
storage on Amazon SWF: the data needs to be retained for
71,814 days or approx. 197 years to reach break-even.

Ethereum cost estimates from the online tool4 have a
difference of up to ± 2.4% for factory contract and process
instance deployment. For the cost of coordination (Ccoord), the
tool estimates this as transactional execution cost (Cfnexec

) +
21,000 gas (Ctx) + cost of payload (Cpload). The payload cost
is (4 bytes of function signature + parameters in bytes) x
Cgas/byte. For most activities in Incident Management, our cost
model estimates gas usage accurately, with the exception of the
customer has problem activity which has unusual gas refund
behavior, affecting cost by 15,000 gas. Achieving accurate
gas usage and cost estimation for function execution is best
achieved by deploying a private Ethereum blockchain.

The Amazon SWF cost model is accurate in estimating
the costs for the SWF elements, with a possible variation for
workflow execution time and data transfer. Estimating the cost
of VM based on the maximum throughput of the VM type and
the workload may vary due to performance variation in AWS
EC2 and complexity of the activity task implementation.

One benefit of a cost model is the ability to predict cost
for different workloads. Having previously validated the cost
models for Ethereum blockchain and Amazon SWF, this gives

4https://ethereum.github.io/browser-solidity

us all the components needed for us to predict the cost of
business process execution for different workloads.

E. Discussion
In this paper, we only studied one business process model,

Incident Management. Whether this process model is repres-
entative carries a threat to the generalizability of our results.
This is because differences in structure and data payloads of
different process models might impact costs. While our cost
model should handle such differences, we have not confirmed
its accuracy for other models.

Another question concerns the applicability of this work,
given the fast pace of change in the blockchain world. As
an example, in a different thread of work [3], a subset of
us investigates options to reduce cost for process execution
on blockchain. In particular, we minimize the storage space
required to capture the process execution state, and minim-
ize the write operations into the persistent variables. These
improvements lead to changes in cost, i.e., reductions of up
to 25%. From our preliminary analysis, the cost models and
methodology outlined in this paper applies – the only changes
are in the values for some of the variables in the blockchain
cost model. As such, there is an indication that the approach
is applicable under such changes.

V. CONCLUSION

Blockchain is of rising importance as a technology for
engineering software applications in cross-organizational set-
tings. The use of blockchain is an architectural choice, which
affects non-functional qualities of a system such as cost. In
this paper, we compared the cost of business process execution
on blockchain against cloud services using an example process
from literature. Through our calculations and experiments, we
have shown that the cost for business process execution on
Ethereum blockchain can be two orders of magnitude higher
than on Amazon SWF: for the processes, the average cost per
process instance was US$ 0.36 vs. 0.0010 at current prices and
exchange rates. Furthermore, the experiments confirmed that
the cost models capture actual cost with relatively high accuracy.
In future work, we plan to devise a method to estimate process
execution cost based on a model and historical execution data.

REFERENCES

[1] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.
Addison-Wesley Professional, Boston, MA, USA, 3rd edition, 2012.

[2] B. Boehm, C. Abts, and S. Chulani. Software development cost estimation
approaches - a survey. Annals Softw. Eng., 10(1-4):177–205, 2000.

[3] L. Garcı́a-Bañuelos, A. Ponomarev, M. Dumas, and I. Weber. Optimized
execution of business processes on blockchain. arXiv preprint, Dec.
2016. http://arxiv.org/abs/1612.03152.

[4] Object Management Group. BPMN 2.0 by Example. www.omg.org/spec/
BPMN/20100601/10-06-02.pdf, June 2010. v1.0. Accessed 10/3/2016.

[5] S. Omohundro. Cryptocurrencies, smart contracts, and artificial intelli-
gence. AI Matters, 1(2):19–21, Dec. 2014.

[6] M. Swan. Blockchain: Blueprint for a New Economy. O’Reilly, US,
2015.

[7] F. Tschorsch and B. Scheuermann. Bitcoin and beyond: A technical
survey on decentralized digital currencies. IACR Cryptology ePrint
Archive, 2015:464, 2015.

[8] I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev, and
J. Mendling. Untrusted business process monitoring and execution
using blockchain. In Intl. Conf. Business Process Management (BPM),
Sept. 2016.

[9] G. Wood. Ethereum: A secure decentralized generalised transaction
ledger — homestead draft. Technical report, 2016.

[10] X. Xu, C. Pautasso, L. Zhu, V. Gramoli, A. Ponomarev, A. B. Tran, and
S. Chen. The blockchain as a software connector. In Working IEEE/IFIP
Conference on Software Architecture (WICSA), Apr. 2016.

https://ethereum.github.io/browser-solidity
http://arxiv.org/abs/1612.03152
www.omg.org/spec/BPMN/20100601/10-06-02.pdf
www.omg.org/spec/BPMN/20100601/10-06-02.pdf

