
APPENDIX

A. Rotation Uncertainty Angle: Implementation Details
Lemma 3, copied below, requires the evaluation of maxr∈Sr ∠(Rrp, Rr0p), where p is any 3D point, r0 is the angle-axis

vector at the centre of rotation cube Cr with surface Sr and Rr is the rotation matrix induced by angle-axis vector r.

Lemma 3. (Rotation uncertainty angle) Given a 3D point p and a rotation cube Cr centred at r0 with surface Sr, then
∀r ∈ Cr,

∠(Rrp, Rr0p) 6 min(max
r∈Sr

∠(Rrp, Rr0p), π) , ψr(p, Cr). (1)

Proof. Inequality (1) can be derived as follows:

∠(Rrp, Rr0p) 6 min(max
r∈Cr

∠(Rrp, Rr0p), π) (2)

= min(max
r∈Sr

∠(Rrp, Rr0p), π) (3)

where (3) is a consequence of the order-preserving mapping, with respect to the radial angle, from the convex cube of angle-
axis vectors to the spherical surface patch, since the mapping is obtained by projecting from the centre of the sphere to the
surface of the sphere.

While it is possible to calculate the bound by sampling the cube surface using a grid of step-size σg , evaluating the angle
at each sample and adding

√
2/2× σg to the greatest angle calculated (by Lemma 1), it is significantly more computationally

efficient to use a different approach. We make two assumptions: (i) the maximum always occurs on the cube skeleton (edges
and vertices), not the faces; and (ii) the angle function along each edge is quasiconvex or concave (specifically unimodal).
The former assumption (i) has been demonstrated empirically in simulations and can be seen in Figure A.1, where it can be
observed that rotation vectors on the cube faces are not projected beyond the convex hull of the projection of the edges for a
given point. Therefore, the projected angle maximiser can always be found on an edge or vertex. The latter assumption (ii)
has also been demonstrated empirically in simulations for all rotation cubes used in the GOPAC algorithm (that is, octree
subdivisions of the angle-axis cube [−π, π]3). In the vast majority of cases, the function is (quasi)convex, meaning that the
angle maximiser occurs at one of the two vertices joined by the edge (the extreme points). In a small fraction of cases, the
maximum occurs on the edge, but not at a vertex, as in Figure A.1. In these cases the assumption of unimodality allows us to
use an efficient search routine, golden section search, which does not require the time-consuming evaluation of the derivative.

Our approach for calculating the rotation uncertainty angle ψr(f , Cr) for a bearing vector f and rotation cube Cr, centred
at angle-axis vector r0 with vertices {ri}i∈[1,8] and an edge parametrisation of r(λ) = ri + λ(rj − ri), is as follows.

(i) For each edge, evaluate the sign of the derivative of the angle function ∠(R−1r(λ)f , R
−1
r0 f) with respect to λ at λ = 0 and

λ = 1 using (12) and (13);
(ii) if (12) is positive and (13) is negative, use golden-section search [5] to find the angle maximiser on that edge, using a

tolerance of π/2048, and add π/2048 to the result;
(iii) otherwise, the angle maximiser on that edge is a vertex: evaluate the angle with respect to the projected cube centre at

both vertices and choose the maximum; and
(iv) choose the overall maximum angle as ψr.

Note that golden section search terminates at a tolerance of π/2048. By Lemma 1, the bound is therefore at most π/2048 =
0.088◦ incorrect, a value that is added to the upper bound to ensure correctness.

We now provide the derivative of the rotation angle function in Lemma A.1. Given a unit 3D bearing vector f and a rotation
cube Cr centred at r0 with vertices {ri}i∈[1,8], the rotation angle function with respect to λ, for an edge parametrisation of
r(λ) = ri + λ(rj − ri) with λ ∈ [0, 1], is

A(λ) = arccos
(
(R−1r0 f) · (R−1r(λ)f)

)
. (4)

Lemma A.1. (Derivative of the rotation angle function) Given a unit 3D bearing vector f and a rotation cube Cr centred at
r0 with vertices {ri}i∈[1,8], then

dA
dλ

=
−fᵀRr0R

ᵀ
r(λ)[f ]×

(
r(λ)r(λ)

ᵀ − (Rr(λ) − I)[r(λ)]×

)(
rj − ri

)
‖r(λ)‖2

√
1− (fᵀRr0R

ᵀ
r(λ)f)

2
. (5)

1



(a) Rotation cube in angle-axis space with centre r0
(blue dot), projected angle maximiser r∗ (red dot),
origin (black circle) and unrotated 3D point p (black
dot). Cube edges and vertices are shown as thin
black lines and small black dots respectively.

(b) Rotation of 3D point p by angle-axis vectors on the surface of the cube with centre-rotated point
Rr0p (blue dot), angle maximiser Rr∗p (red dot) and origin (black circle). 40 equally-spaced lines
across each face are plotted in grey. All points and lines, other than the origin and lines to the origin,
lie on the surface of a sphere with radius ‖p‖. Cube edges and vertices are shown as thin black
lines and small black dots respectively. The weak rotation uncertainty angle ψw

r corresponds to the
aperture angle of the cone formed by the origin and the grey circle. Our rotation uncertainty angle ψr

corresponds to the aperture angle of the cone formed by the origin and the black circle.

Figure A.1. A random rotation cube and the rotation of a random 3D point by all angle-axis vectors on the surface of that cube. Observe
that the rotation vector that maximises the angle ∠(Rrp, Rr0p) lies on a cube edge. Also observe that rotation vectors on the face of the
cube (grey lines in the projection) do not rotate the point beyond the convex hull of the point rotated by the edges. Best viewed in colour.

Proof. Equation (5) can be derived as follows:

dA =
−1√

1− (fᵀRr0R
ᵀ
r(λ)f)

2
d
(
(R−1r0 f) · (R−1r(λ)f)

)
(6)

=
−1√

1− (fᵀRr0R
ᵀ
r(λ)f)

2
f
ᵀ
Rr0d

(
R
ᵀ
r(λ)f

)
(7)

=
−1√

1− (fᵀRr0R
ᵀ
r(λ)f)

2
f
ᵀ
Rr0d

(
R−r(λ)f

)
(8)

=
−1√

1− (fᵀRr0R
ᵀ
r(λ)f)

2
f
ᵀ
Rr0

(
− R−r(λ)[f ]×

(−r(λ))(−r(λ))
ᵀ

+ (R
ᵀ
−r(λ) − I)[−r(λ)]×

‖ − r(λ)‖2

)
d(−r(λ)) (9)

=
−1√

1− (fᵀRr0R
ᵀ
r(λ)f)

2
f
ᵀ
Rr0

(
− R

ᵀ
r(λ)[f ]×

r(λ)r(λ)
ᵀ − (Rr(λ) − I)[r(λ)]×

‖r(λ)‖2

)
d(−r(λ)) (10)

=
−1√

1− (fᵀRr0R
ᵀ
r(λ)f)

2
f
ᵀ
Rr0

(
R
ᵀ
r(λ)[f ]×

r(λ)r(λ)
ᵀ − (Rr(λ) − I)[r(λ)]×

‖r(λ)‖2

)
(rj − ri)dλ (11)



where (9) uses Result 1 from [3] and the derivative follows from the differential.

Since the derivative is computationally expensive to calculate, we only evaluate it at the vertices. In addition, we only
require the sign of the result, which simplifies the equation. Corollary A.1 presents the relevant results.

Corollary A.1. (Sign of the derivative of the rotation angle function at the vertices) Given a unit 3D bearing vector f and a
rotation cube Cr centred at r0 with vertices {ri}i∈[1,8], then

sgn
dA
dλ

∣∣∣∣∣
λ=0

= sgn−fᵀRr0R
ᵀ
ri [f ]×

(
rir

ᵀ
i − (Rri − I)[ri]×

)(
rj − ri

)
(12)

and

sgn
dA
dλ

∣∣∣∣∣
λ=1

= sgn−fᵀRr0R
ᵀ
rj [f ]×

(
rjr

ᵀ
j − (Rrj − I)[rj ]×

)(
rj − ri

)
. (13)

B. Tighter Upper Bound: Implementation Details
The upper bound given in Theorem 3 requires the evaluation of Γ(f ,p) for a given translation cuboid Ct. If the ray through

f passes through the cube pr0
t for t ∈ Ct, the angle ∠(f ,pr0

t ) is zero. Otherwise, ∠(f ,pr0
t ) is equal to the angle between

the f and the point on the skeleton of the cube (vertices and edges) with least angular displacement from f . Thus, for the
translation domain Ct with skeleton Skt,

Γ(f ,p) =

{
max
t∈Skt

1
(
θ − ∠(f ,pr0

t ) + ψr(f , Cr)
)

if ∠(f ,pr0
t0

) > ψt(p, Ct)

1 else.
(14)

The key here is finding ∠(f ,pr0
t ) which maximises Γ over the skeleton. For the first case, the implementation needs to find

pr0
t with least angular displacement from f . We use the following technique:

(i) find octant of p− t0 and project the cube to the unit sphere as a spherical hexagon;
(ii) determine in which lune of the spherical hexagon (induced by the spherical hexagon) Rr0 resides; and

(iii) solve for point on hexagon edge in that lune with least angular displacement from Rr0 .

We know from the data structure design that all translated points p− t for t ∈ Ct lie entirely in one octant of R3. Finding the
octant (i) enables us to project the cube to a spherical hexagon on the unit sphere. That is, we can determine the 6 vertices of
the cube that form the vertices of the spherical hexagon after projection and the order in which they cycle. This has simplified
the problem to one of finding the closest point on the spherical hexagon to the rotated bearing vector. Finding which lune
the rotated bearing lies in (ii) further simplifies the problem to one of finding the closest point on a geodesic to the rotated
bearing vector. This can be solved in closed form (iii).

C. Precomputing Angles on the Sphere
The nested structure of this implementation may be exploited by pre-computing the angle between the translated 3D

points and any location on the unit sphere. Thus, for a fixed translation, the angle between any rotated bearing vector and its
rotationally-closest 3D point may be pre-computed. This is essentially the analogue of a distance transform on the surface
of the sphere S2, in that the sphere is discretised and a look-up table constructed. By using this precomputation, the max
operation in (27) and (28) is reduced from O(M) to O(1).

The procedure for constructing this look-up table follows. We subdivide the sphere into 98304 regions by projecting it
onto an enclosing cube whose faces are partitioned with quad-trees. The configuration chosen ensures that the maximum
angle between an arbitrary point and its nearest cell centre is 0.6◦. We use a linear projection onto the cube, which facilitates
rapid conversion from a unit vector to a location in the data structure. The disadvantage of a linear projection is that the cell
sizes are not uniform, although they all respect the angle condition given above.

Mathematically, the effect of using this data structure is to relax θ by up to 0.6◦. This means that the result is no longer
optimal with respect to θ, although it should be near-optimal. We did not use this feature in the experiments, because it cannot
ensure optimality, although it is useful for solving problems with large M , that is, many 3D points.



D. Comparison with Weaker Bounds
The weaker sphere-based uncertainty angles ψwr and ψwt given in (7) and (16) appeared originally in [4] and [1] respec-

tively. The tighter cuboid-based uncertainty angles ψr and ψt given in (10) and (13) are original to this work and lead to
tighter bounds on the objective function. This can be seen from Theorems 1 and 2, where it is clear that f̄ −

¯
f is smaller

when the uncertainty angles ψr and ψt are smaller. The proofs that ψr 6 ψwr and ψt 6 ψwt will now be given.

Lemma D.1. (Rotation uncertainty angle inequality) Given a 3D bearing vector f and a rotation cube Cr of half-side length
δr centred at r0, then

ψr(f , Cr) 6 ψwr (Cr). (15)

Proof. Inequality (15) can be derived as follows:

ψr(f , Cr) = min

{
max
r∈Sr

∠(Rrf , Rr0f), π

}
(16)

= min {∠(Rr∗f , Rr0f), π} (17)

6 min
{√

3δr, π
}

(18)

= ψwr (Cr) (19)

where (17) replaces the maximisation with the arg max rotation r∗ and (18) follows from Lemma 2.

Lemma D.2. (Translation uncertainty angle inequality) Given a 3D point p and a translation cuboid Ct of half-side length
δt centred at t0, then

ψt(p, Ct) 6 ψwt (p, Ct). (20)

Proof. Inequality (20) can be derived as follows. For ‖p− t0‖ > ρt, which is guaranteed for ρt 6 ζ,

ψt(p, Ct) = max
t∈Vt

∠(p− t,p− t0) (21)

6 max
t∈S2

t

∠(p− t,p− t0) (22)

= arcsin

(
ρt

‖p− t0‖

)
(23)

= ψwt (p, Ct) (24)

where (22) follows from maximising the angle over the circumsphere S2
t of the cuboid instead of the vertices and (23) is

shown in [1] with ρt being the half space diagonal of the translation subcuboid Ct. For ‖p− t0‖ < ρt, ψt 6 π = ψwt .

Therefore, the weaker uncertainty angles ψwr and ψwt are larger than the uncertainty angles ψr and ψt for a given rotation
or translation subcuboid. Consequently, the bounds using ψr and ψt are tighter than those using ψwr and ψwt .

E. Proof of Algorithm Convergence
A requirement of branch-and-bound is that the upper and lower bounds converge as the size of the branch tends to zero.

The convergence of the bounds can be proved as follows. It is clear that the upper bound (19) is equal to the lower bound
(17) when the uncertainty angles ψr(f , Cr) and ψt(p, Ct) are zero. Similarly, the tighter upper bound (22) is equal to the
lower bound when the rotation uncertainty angle ψr(f , Cr) is zero and the translation subcuboid Ct is of size zero, since then
∠(f ,pr0

t ) = ∠(f ,pr0
t0

) for t ∈ Ct. It remains to be seen that ψr(f , Cr) and ψt(p, Ct) tend to zero as the size of the subcuboids
Cr and Ct tend to zero, irrespective of the value of f or p.

The rotation uncertainty angle ψr(f , Cr) involves a maximisation over all rotations on the surface of the subcube Cr. As
the subcube size tends to zero, in the limit the surface and centre of the cube become identified and therefore the angle
∠(Rrf , Rr0f) equals zero. The translation uncertainty angle ψt(p, Ct) involves a maximisation over all translations on the
vertices of the subcuboid Ct. As the subcuboid size tends to zero, in the limit the vertices and centre of the cuboid become
identified and therefore the angle ∠(p− t,p− t0) equals zero. The point p cannot lie inside the subcuboid for a sufficiently
small cuboid, since the translation domain has been restricted to exclude translations for which ‖p − t‖ < ζ. Therefore the
upper and lower bounds converge as the size of subcuboids (branches) tend to zero.



θ

O
f1f2

θ

p1p2

<π−2θ

Figure E.1. Example of a critical configuration (rotation-only). The angle between the 3D point vectors ∠(p1,p2) is infinitesimally less
than π − 2θ. To prove that the maximum number of inliers is 1, infinitesimally small rotation subcubes will be required.

However, an advantage of the inlier maximisation formulation is that the gap between the bounds becomes exactly zero
well before the branch size becomes infinitesimal. There are nonetheless critical configurations of points and bearing vectors
for which the bounds will only converge in the limit. The simplest case is illustrated in Figure E.1. In this rotation-only
example, the angle between the 3D point vectors is infinitesimally less than π − 2θ. To prove that the maximum number of
inliers is 1, infinitesimally small rotation subcubes will be required.

In order to guarantee that the algorithm terminates in finite time, a small tolerance value η must be subtracted from the
uncertainty angles. That is, replace the uncertainty angles in all the formulae with their primed versions: ψ′r = ψr − η and
ψ′t = ψt−η. For the tighter upper bound, η also has to be added to ∠(f ,pr0

t ). Writing the nested bounds with the uncertainty
angle tolerances gives the following. The upper bound ν̄ , ν̄t (19) for the translation cuboid Ct is found by running rotation
BB until convergence with the following bounds

¯
νr ,

∑
f∈F

max
p∈P

1
(
θ − ∠(f ,pr0

t0
) + ψ′t(p)

)
(25)

ν̄r ,
∑
f∈F

max
p∈P

1
(
θ − ∠(f ,pr0

t0
) + ψ′t(p) + ψ′r(f)

)
. (26)

The tighter upper bound (22) instead uses

¯
νr ,

∑
f∈F

max
p∈P,t∈Ct

1
(
θ − ∠(f ,pr0

t )− η
)

(27)

ν̄r ,
∑
f∈F

max
p∈P,t∈Ct

1
(
θ − ∠(f ,pr0

t )− η + ψ′r(f)
)
. (28)

The lower bound
¯
ν ,

¯
νt (17) for Ct is found by running rotation BB until convergence using bounds (25) and (26) with ψ′t

set to zero. That is, the bounds

¯
νr ,

∑
f∈F

max
p∈P

1
(
θ − ∠(f ,pr0

t0
)
)

(29)

ν̄r ,
∑
f∈F

max
p∈P

1
(
θ − ∠(f ,pr0

t0
) + ψ′r(f)

)
. (30)



In this work, η was set to machine epsilon for maximal precision. In C++, this can be accessed by using the command
std::numeric limits<float>::epsilon().

F. Time Complexity
Explicitly including the tolerance η in the bound formulae makes it possible to derive a bound on the worst-case search

tree depth and thereby obtain the time complexity of the algorithm. In terms of the size of the input, the GOPAC algorithm
is O(MN), or O(N) if angle precomputation is used, where M is the number of 3D points and N is the number of bearing
vectors. However, the notation conceals a very large constant. Including the constant factors that can be selected by the user
yieldsO(ρ3t0ζ

−3η−6MN), where ρt0 is the half space diagonal of the initial translation cuboids, that is one-quarter the space
diagonal of the translation domain, and ζ and η are small previously-defined constants set by the user.

Calculating the upper and lower bounds involves a summation overF and a maximisation overP , therefore the complexity
isO(MN). If angle precomputation is used, the maximisation becomes a constant-time lookup leading to a bound complexity
of O(N). However, it is as of yet unclear how the number of iterations (explored subcuboids) depends on the inputs. The
central finding is that branch-and-bound is exponential in the worst-case tree search depth D, but D is logarithmic in η−1.
Therefore the complexity of BB is polynomial in η−1, where η is the angle tolerance. Rotation and translation search will be
treated separately before being combined into an analysis of nested rotation and translation search.

Theorem 1. (Rotation Search Depth and Complexity) Let ρr0 =
√

3δr0 =
√
3π/2 be the half space diagonal of the initial

rotation subcube Cr0 . Then

Dr = max

{⌈
log2

ρr0
η

⌉
, 0

}
(31)

is an upper bound on the worst-case rotation tree search depth for an uncertainty angle tolerance η and O(η−3) is the time
complexity of rotation BB search.

Proof. Rotation BB converges when
¯
νr > ν̄r. For any ψ′t(p, Ct) in (25) and (26),

¯
νr > ν̄r when ψ′r(f , Cr) 6 0 or equivalently

ψr(f , Cr) 6 η for all f ∈ F . Now,

ψr(f , Cr) = min

{
max
r∈Sr

∠(Rrf , Rr0f), π

}
(32)

= min {∠(Rr∗f , Rr0f), π} (33)

6 min
{√

3δr, π
}

(34)

6 ρr (35)

where (33) replaces the maximisation with the arg max rotation r∗, (34) follows from Lemma 2 and ρr is the half space
diagonal of the rotation subcube Cr. At rotation search tree depth Dr, the half space diagonal is given by

ρrDr
=

1

2
ρrDr−1

=
1

2Dr
ρr0 . (36)

Substituting into (35) gives
ψr(f , CrDr

) 6 ρrDr
= 2−Drρr0 . (37)

To find the worst-case rotation search tree depth, the constraint ψr(f , Cr) 6 η is applied:

ψr(f , CrDr
) 6 2−Drρr0 6 η. (38)

Taking the logarithm of both sides yields
Dr > log2

ρr0
η
. (39)

Equation (31) follows from the requirement that Dr be a non-negative integer. Now, rotation BB will have examined at most

Nr = 8(1 + 8 + 82 + · · ·+ 8Dr ) = 8
8Dr+1 − 1

8− 1
=

8

7

(
(2Dr+1)3 − 1

)
(40)



subcubes at search depthDr, due to the octree structure. Finally, substituting (31) into (40) and simplifying using Bachmann–
Landau notation gives

Nr = O

((
ρr0
η

)3
)

= O
(
η−3

)
. (41)

The ρr0 term is removed because it is a constant (equal to
√

3π/2) that is not selected by the user.

The analysis of the worst-case search depth and time complexity for translation search proceeds in a similar manner.

Theorem 2. (Translation Search Depth and Complexity) Let ρt0 be the half space diagonal of the initial translation subcuboid
Ct0 . Then

Dt = max

{⌈
log2

ρt0
ζ sin η

⌉
, 0

}
(42)

is an upper bound on the worst-case translation tree search depth for an uncertainty angle tolerance η and O(ρ3t0ζ
−3η−3) is

the time complexity of translation BB search.

Proof. Translation BB converges when
¯
νt > ν̄t. This condition is met when ψ′t(p, Ct) 6 0 or equivalently ψt(p, Ct) 6 η for

all p ∈ P . This can be seen by inspecting (25) and (29) and noting that at convergence the upper and lower rotation bounds
will be equal. Now for ‖p− t0‖ > ρt, which is guaranteed for ρt 6 ζ,

ψt(p, Ct) = max
t∈Vt

∠(p− t,p− t0) (43)

6 max
t∈S2

t

∠(p− t,p− t0) (44)

= arcsin

(
ρt

‖p− t0‖

)
(45)

6 arcsin

(
ρt
ζ

)
(46)

where (44) follows from maximising the angle over the circumsphere S2
t of the cuboid instead of the vertices, (45) is shown

in [1] with ρt being the half space diagonal of the translation subcuboid Ct, and (46) follows from the restriction of the
translation domain such that ‖p− t‖ > ζ. At translation search tree depth Dt, the half space diagonal of CtDt

is given by

ρtDt
=

1

2
ρtDt−1

=
1

2Dt
ρt0 . (47)

Substituting into (46) gives

ψt(p, CtDt
) 6 arcsin

(
ρtDt

ζ

)
= arcsin

(
ρt0
ζ2Dt

)
. (48)

To find the worst-case translation search tree depth, the constraint ψt(p, Ct) 6 η is applied, resulting in

ψt(p, CtDt
) 6 arcsin

(
ρt0
ζ2Dt

)
6 η. (49)

Taking the sine and logarithm of both sides yields

Dt > log2

ρt0
ζ sin η

. (50)

Equation (42) follows from the requirement that Dt be a non-negative integer. Now, translation BB will have examined at
most

Nt = 8(1 + 8 + 82 + · · ·+ 8Dt) = 8
8Dt+1 − 1

8− 1
=

8

7

(
(2Dt+1)3 − 1

)
(51)

subcuboids at search depth Dt. Finally, substituting (42) into (51) and simplifying using Bachmann–Landau notation and the
Taylor expansion of sin η gives

Nt = O
(
ρ3t0ζ

−3(sin η)−3
)

= O
(
ρ3t0ζ

−3η−3
)
. (52)



In the nested BB search structure detailed at the beginning of Section 5, for every translation subcuboid examined, rotation
BB search is run once to find the lower translation bound and again to find the upper translation bound. Thus the number of
rotation subcubes examined is at worst equal to 2NtNr. For each rotation subcube, both the upper and lower bounds must
be calculated, each with a time complexity of O(MN). Thus the total number of bound calculations is at worst equal to
4NtNr. Combining the time complexity analyses (41) and (52) with the time complexity of the bound calculations leads to
the following corollary.

Corollary F.1. (Time Complexity of GOPAC) Let ρt0 be the half space diagonal of the initial translation subcuboid Ct0 , ζ
be the translation restriction parameter, η be the uncertainty angle tolerance, M be the number of 3D points and N be the
number of bearing vectors, then the time complexity of the GOPAC algorithm is given by

O
(
ρ3t0ζ

−3η−6MN
)
. (53)

It is important to observe that experimental evaluation of runtime is more revealing for BB algorithms than time complexity
analysis. The main reason to use BB is that it can prune large regions of the search space, reducing the size of the problem.
This is not reflected in the complexity analysis.

G. Additional Experiments and Results
G.1. Synthetic Data Experiments: Cube Prior

In the paper, we applied a torus prior in order to be as fair to the local optimisation approaches as possible. However, in
general, restrictive constraints on the rotation and translation cannot be easily obtained. A more realistic prior, that can still
be used by BlindPnP [7] and SoftPOSIT [2] in order to facilitate comparison, is a cube prior. This constrains the camera
centre to a cube with no restriction on rotation. The intent of this prior is to simulate the task of camera pose estimation with
respect to a scene, such as locating a camera inside a building, instead of the torus prior which simulates the task of camera
pose estimation with respect to an object, such as a teapot on a table.

We use a cube centred at a random location in [−1, 1]3 with side-length 0.5m. Again, we use the Monte Carlo simulation
framework of [7] for the experiments: M random 3D points were generated from [−1, 1]3; a fraction ω3D of the 3D points
were randomly selected as outliers to model occlusion; the inliers were projected to a virtual image 640 × 480 with an
effective focal length of 800 and centre of (320, 240) and normal noise was added with σ = 2 pixels; and random points
were added to the image such that a fraction ω2D of the 2D points were outliers.

BlindPnP represents this pose prior with a 50 component Gaussian mixture model, the means of which are used to initialise
SoftPOSIT, as in [7]. We have increased the number of components from the 20 recommended by the authors to help model
the increased rotation uncertainty. The mixture model was trained from a set of 200 random camera centres in the cube and
a set of 200 uniform random rotation matrices, generated using the method in [6].

The results are shown in Figure G.1. Two success rates are reported: the fraction of trials where the true maximum number
of inliers was found and the fraction where the correct pose was found, where the angle between the output rotation and the
ground truth rotation is less than 0.1 radians and the camera centre error ‖t− tGT‖/‖tGT‖ relative to the ground truth tGT is
less than 0.1, as in [7]. The 2D and 3D outlier fractions were fixed to 0 when not being varied and multithreading was used
in the 2D outlier experiments. Our method (GOPAC) outperforms the other methods by a significant margin. In particular,
SoftPOSIT was unable to find the correct pose in all experiments, largely due to being unable to handle 3D points behind the
camera. BlindPnP is also sensitive to 3D outliers behind the camera and is relatively slow with 50 mixture model components,
as is reflected in its results. However, it was necessary to use 50 in order to obtain reasonable results for the camera pose.
Moreover, without a strong rotation prior, both local methods have difficulty finding the best pose.

G.2. Synthetic Data Experiments: Early Termination

The early termination strategy, referred to in the paper as “truncated GOPAC” or bGPc, is investigated further in this
section. Recall that since the majority of the runtime of the algorithm is spent decreasing the upper bound, an early termination
strategy will often attain the global optimum, although it will not be able to guarantee optimality. We repeated the 2D outlier
experiments for the torus prior with random points to show the performance of our algorithm when it is terminated after 30s.
At termination, the algorithm returns the best-so-far cardinality and camera pose, as well as a flag to indicate that the result
is not guaranteed to be optimal. The results are shown in Figure G.2. It is clear that the method still performs very well even
when terminated early, albeit without an optimality guarantee. For some applications, it may be worth sacrificing optimality
for the significant decrease in runtime. For comparison, we also plot the results from the paper without truncation.



0 0.25 0.5 0.75
0

1

Su
cc

es
s 

R
at

e 
(I

nl
ie

rs
)

0 0.1 0.2 0.3
0

1

 

 
GP

RS

SP

BP

0 0.25 0.5 0.75
0

1

Su
cc

es
s 

R
at

e 
(P

os
e)

0 0.1 0.2 0.3
0

1

0 0.25 0.5 0.75
0

50

100

150

200

3D Outlier Fraction

D
ur

at
io

n 
(s

)

0 0.1 0.2 0.3
0

50

100

150

200

2D Outlier Fraction
Figure G.1. Cube Prior. Mean success rates and median runtimes with respect to the 3D and 2D outlier fractions for the random points
dataset, for 50 Monte Carlo simulations per parameter value with the cube prior. The 2D outlier fraction was fixed at 0 for the 3D outlier
experiments and the 3D outlier fraction was fixed at 0 for the 2D outlier experiments.

0 0.1 0.2 0.3
0

1

2D Outlier Fraction

Su
cc

es
s 

R
at

e 
(I

nl
ie

rs
)

0 0.1 0.2 0.3
0

1

2D Outlier Fraction

Su
cc

es
s 

R
at

e 
(P

os
e)

0 0.1 0.2 0.3
0

10

20

30

40

2D Outlier Fraction

D
ur

at
io

n 
(s

)

(a) Truncated GOPAC

0 0.1 0.2 0.3
0

1

2D Outlier Fraction

Su
cc

es
s 

R
at

e 
(I

nl
ie

rs
)

0 0.1 0.2 0.3
0

1

2D Outlier Fraction

Su
cc

es
s 

R
at

e 
(P

os
e)

0 0.1 0.2 0.3
0

100

200

300

2D Outlier Fraction

D
ur

at
io

n 
(s

)

 

 GP

RS

SP

BP

(b) Standard GOPAC
Figure G.2. A comparison of “truncated GOPAC” and standard GOPAC. Mean success rates and median runtimes with respect to the 2D
outlier fractions for the random points dataset, for 50 Monte Carlo simulations per parameter value with the torus prior. The 3D outlier
fraction was fixed at 0.

G.3. Real Data Experiments

In this section, we present quantitative and qualitative results for a new dataset and additional quantitative and qualitative
results for the experiments reported in Section 6.2. The new dataset was generated from a different scene (“Scene5”) of the
outdoor DATA61/2D3D dataset, using the same method described in Section 6.2. It consists of a 3D point-set with 98 points,
a set of 11 images containing 30 2D features and a set of ground truth camera poses. In contrast to the residential scene
reported in the main paper (“Scene1”), this scene is mixed-use, with residential and commercial or industrial areas, is less



Table G.1. Camera pose results for the supplementary DATA61/2D3D dataset (“Scene5”). Quartiles for translation error, rotation error
and runtime and the mean inlier recall and success rates are reported. bGPc denotes truncated GOPAC, where search is terminated after
30s, with no optimality guarantee. RSK denotes RANSAC with K million iterations.

Method GP bGPc RS20 RS240

Translation Error (m) 1.59 / 2.03 / 11.2 1.70 / 2.72 / 11.3 7.79 / 31.5 / 45.8 1.74 / 4.11 / 14.9
Rotation Error (◦) 2.14 / 3.28 / 179 1.95 / 3.70 / 179 117 / 179 / 179 3.52 / 140 / 179
Recall (Inliers) 1.00 0.98 0.78 0.86
Success Rate (Inliers) 1.00 0.55 0.00 0.09
Success Rate (Pose) 0.55 0.55 0.18 0.45
Runtime (s) 229 / 346 / 409 33 / 33 / 33 29 / 29 / 32 339 / 347 / 382

Table G.2. Camera pose results for the DATA61/2D3D dataset (“Scene1”). Quartiles for translation error, rotation error and runtime and
the mean inlier recall and success rates are reported. bGPc denotes truncated GOPAC, where search is terminated after 30s, with no
optimality guarantee. RSK denotes RANSAC with K million iterations.

Method GP bGPc RS20 RS280

Translation Error (m) 1.77 / 2.30 / 4.37 1.85 / 3.10 / 6.31 13.0 / 20.3 / 24.8 19.2 / 28.5 / 38.4
Rotation Error (◦) 1.75 / 2.08 / 3.15 1.92 / 3.04 / 137 90.2 / 178 / 179 117 / 179 / 179
Recall (Inliers) 1.00 0.97 0.75 0.81
Success Rate (Inliers) 1.00 0.45 0.00 0.00
Success Rate (Pose) 0.82 0.64 0.09 0.09
Runtime (s) 311 / 477 / 496 33 / 34 / 34 33 / 34 / 35 453 / 471 / 480

spread out, and contains fewer buildings. For this experiment, we used an inlier threshold of θ = 2◦, multithreading and a
2D outlier fraction guess of ω2D = 0.25. The translation domain was 50 × 5 × 5m, covering two lanes of the road, making
use of the knowledge that the camera was mounted on a survey vehicle.

Qualitative results for the GOPAC and RANSAC algorithms are shown in Figure G.3 and quantitative results in Table G.1.
GOPAC finds the optimal number of inliers for all frames and the correct camera pose for the majority of frames, despite
the naı̈vety of the 2D/3D point extraction process. It is clear however that finding the optimal inlier set does not always
correspond to finding the optimal pose for such a weak feature extraction procedure. In contrast, RANSAC performed better
on this dataset than the original one, since it contains fewer, denser 3D clusters. This is beneficial for RANSAC because it
reduces the implicitly-searched pose space, whereas it is disadvantageous for GOPAC because it does not reduce the search
space and can mean that the inlier set at the correct pose has a lower cardinality than the inlier set at some incorrect poses.
The main failure modes for GOPAC and RANSAC were 180◦ rotation flips, due to ambiguities arising from the low angular
separation of points in the vertical direction.

Due to space restrictions, some additional quantitative and qualitative results for the experiments reported in Section 6.2
were not presented in the main paper. In Table G.2, Table 1 has been rewritten with quartile information for a more complete
representation of the data. In Figure G.4, Figure 1 has been re-plotted at a larger scale. In Figures G.5, G.6 and G.7, we
plot the remaining 10 images with the results obtained by GOPAC and RANSAC. It can be seen that there are two failure
cases, with respect to camera pose (both remain optimal with respect to the number of inliers). In both cases, some of the
extracted 2D features lie on non-building pixels, due to an error in the segmentation, which can be thought of as particularly
undesirable 2D outliers. This is likely to have contributed to the algorithm finding the incorrect pose.

References
[1] M. Brown, D. Windridge, and J.-Y. Guillemaut. Globally optimal 2D-3D registration from points or lines without correspondences. In

Proc. 2015 Int. Conf. Comput. Vision, pages 2111–2119, 2015. 4, 7
[2] P. David, D. Dementhon, R. Duraiswami, and H. Samet. SoftPOSIT: simultaneous pose and correspondence determination. Int. J.

Comput. Vision, 59(3):259–284, 2004. 8
[3] G. Gallego and A. Yezzi. A compact formula for the derivative of a 3-D rotation in exponential coordinates. J. Mathematical Imaging

Vision, 51(3):378–384, 2015. 3
[4] R. I. Hartley and F. Kahl. Global optimization through rotation space search. Int. J. Comput. Vision, 82(1):64–79, 2009. 4
[5] J. Kiefer. Sequential minimax search for a maximum. Proc. Am. Math. Soc., 4(3):502–506, 1953. 1
[6] F. Mezzadri. How to generate random matrices from the classical compact groups. Notices Amer. Math. Soc., 54(5):592–604, 2007. 8
[7] F. Moreno-Noguer, V. Lepetit, and P. Fua. Pose priors for simultaneously solving alignment and correspondence. In Proc. 2008

European Conf. Comput. Vision, pages 405–418. Springer, 2008. 8



(a) 3D point-set (grey and green), 3D features (black dots) and ground-truth (black), RANSAC (red) and our (blue) camera poses. The ground-truth and our
camera poses coincide, whereas the RANSAC pose has a translation offset and a 180◦ rotation offset. Best viewed in colour.

(b) Panoramic photograph and extracted 2D features (top), building points projected onto the image using the RANSAC camera pose (middle) and building
points projected using our camera pose (bottom).
Figure G.3. Qualitative camera pose results for the supplementary DATA61/2D3D dataset (“Scene5”). The pose of the camera when it
captured image 6 is shown, as is the projection of the building points onto image 6.



(a) 3D point-set (grey and green), 3D features (black dots) and ground-truth (black), RANSAC (red) and our (blue) camera poses. The ground-truth and our
camera poses coincide, whereas the RANSAC pose has a translation offset and a 180◦ rotation offset. Best viewed in colour.

(b) Image 10. Panoramic photograph and extracted 2D features (top), building points projected onto the image using the RANSAC camera pose (middle)
and building points projected using our camera pose (bottom).
Figure G.4. Estimating the pose of a calibrated camera from a single image within a large-scale, unorganised 3D point-set captured by
vehicle-mounted laser scanner. Our method solves the absolute pose problem while simultaneously finding feature correspondences, using
a globally-optimal branch-and-bound approach with tight novel bounds on the cardinality of the inlier set.



(a) Image 1: 2D features (top), building points projected using RANSAC camera pose (middle) and building points projected using our pose (bottom).

(b) Image 2: 2D features (top), building points projected using RANSAC camera pose (middle) and building points projected using our pose (bottom).

(c) Image 3: 2D features (top), building points projected using RANSAC camera pose (middle) and building points projected using our pose (bottom).

(d) Image 4: 2D features (top), building points projected using RANSAC camera pose (middle) and building points projected using our pose (bottom).
Figure G.5. Qualitative results for 4 test images. Our method (GOPAC) found the correct camera pose for every image.



(a) Image 5: 2D features (top), building points projected using RANSAC camera pose (middle) and building points projected using our pose (bottom).

(b) Image 6: 2D features (top), building points projected using RANSAC camera pose (middle) and building points projected using our pose (bottom).

(c) Image 7: 2D features (top), building points projected using RANSAC camera pose (middle) and building points projected using our pose (bottom).
Figure G.6. Qualitative results for 3 test images. Image 6 was a failure case for our method, with respect to camera pose, although it still
found the optimal number of inliers. It can be seen that three 2D features were extracted at non-building locations, due to an error in the
segmentation. This may have contributed to the algorithm finding an incorrect pose.



(a) Image 8: 2D features (top), building points projected using RANSAC camera pose (middle) and building points projected using our pose (bottom).

(b) Image 9: 2D features (top), building points projected using RANSAC camera pose (middle) and building points projected using our pose (bottom).

(c) Image 11: 2D features (top), building points projected using RANSAC camera pose (middle) and building points projected using our pose (bottom).
Figure G.7. Qualitative results for 3 test images. Image 9 was a failure case for our method, with respect to camera pose, although it still
found the optimal number of inliers. Like the previous failure case, 2D features were extracted at non-building locations, due to an error in
the segmentation. This may have contributed to the algorithm finding an incorrect pose.


