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Topics for Today’s Talk

e Machine Unlearning
- Fast Machine Unlearning Algorithm

- Future Research Direction

e Deepfake Detection
- Generalized Deepfake Detection

- Proactive Defense: Generation Suppression/Concept Erasing
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Brief introduction about me

Personal Background

Born & Lived in S. Korea (for 18 years) Immigrated to USA (for 20 years) Since 2017, living in S. Korea
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My Main Research Areas

e Al Security & Privacy
o Multimedia Forensics (Deepfakes)

o Machine Unlearning

e Other Topics
o Anomaly Detection (vision, time-series)
o Medical Anomaly Detection

o Satellite Object Detection
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Machine Unlearning
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What is Machine Unlearning?

 Make a machine to forget what it leaned
(specific information, image, class, instances, etc)

 Make a machine to erase some parts of its memory

Unlearn Learn Unlearn
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What is Machine Unlearning?

[ —

Training Data

Rerunning

(Retrained Model: f°)

(except Unlearned Data)

Perf(f’) =~ Perf(f”)

Tralnlng Data

Machlne Unlearning

To be Unlearned Learning Algorithm Unlearning

Data  (Trained Model: f) (Unlearned Model: )
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Layer Attack Unlearning:
Fast and Accurate Machine Unlearning via Layer
Level Attack and Knowledge Distillation

Hyunjune Kim, Sangyong Lee, Simon S. Woo*
Sungkyunkwan University, Suwon, South Korea

The 38th Annual AAAI Conference on Artificial Intelligence
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= Companies handling such personal data should delete the information from their ML

models in response to the user’s request for forgetting: GDPR, Privacy, Copyright issues

= Simply retraining models to exclude information subject to user’'s request for
forgetting requires significant costs and time.
= Machine unlearning offers a solution by selectively forgetting specific data without

retraining in ML models.
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= There are several approaches to solve the problem of machine unlearning

o Data-driven
m This strategy involves effectively managing (datg by partitioning or

augmenting to make unlearning model.

o Model-agnostic
m This strategy is a methodology by adjusting the model’'s learning

parameters for forgetting.
= Qur approach we will introduce among these is model-agnostic to solve class-wise

unlearning problem.
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= To efficiently perform unlearning task, we propose layer-level unlearning

and Partial PGD instead of unlearning the entire model.

= By utilizing knowledge distillation (KD), we preserved the model’s utility
after the unlearning task.

= Qur approach achieves good results in terms of time and accuracy
through experiments in diverse environments.
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Overall Architecture and Procedures

= We focus on only modifying the parameters of the classification layer tied to classification instead of the

entire layers for unlearning

= This approach uses of classification layer as Student and Teacher at each epoch for KD
m  The role of Partial PGD is to find target information in the vicinity of the forget data samples,

which is then distilled into knowledge for Student

Student
(Classification layer) Backward
( i
| Copy per i | CELoss
! i Unlearned mask 1
Target Y Teacher /7 SPOch :
forget data L — KD Loss
Feature layer | | Parti
Distillation

Loss




Unique Origin Unigque Future

Adversarial examples in unlearning:
m  Random or irrelevant class assignments significantly
impair task performance
= Enhance the search for appropriate neighboring
spaces for forgetting data assignment

Differentiation in adversarial approach:
m  Clarifies the unique role of adversarial examples in the

study, unlike previous methods
=  QOriginal PGD approach

calculation
=  No requirement for full model gradient calculation,
optimizing the adversarial creation process

may introduce

:L.f—i—l — H(It + (E . S?:gn(vmlc(ma Y, 9)))

slow

4 xStep )
Backward xadv
K Feature layer (Fef ) Classification layer (F§) /

(a) Original PGD

o / xStep )
ﬁ — =) Feature ==p =
: @ @ Loss $  Feature |
S gadv
Noise

Feature layer (Fef) Classification layer (Fg ) /
(b) Partial-PGD

O =TI + (e - sign(VeL(4,y,0)))
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Original Boundary \
/ 7 Unlearned Boundary S
ff—
r 4 -
/ ) =)
X Unlearning Boundary
@ ® - (c)

K {@Retain data_ @ Forget data_ & Adversarial example; /

Boundary evolution in the unlearning process. As shown in (a), the original model receives the initial
knowledge about the boundary. As the epoch progresses, the boundary information updates as depicted in
(b) and (c) from the distilled knowledge
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End-to-End Unlearning Process
Cross-Entropy (CE) Loss:

m  Application of Partial-PGD on the teacher model to generate adversarial examples to find the space near the forget data
= |nthis CS Loss, the step involves injecting the Teacher’s hard label information into the Student
=  Then non-unlearned logits replace adversarial ones for loss computation to make the unlearned mask

m  The replaced logtis are represented by the argmax results, indicated as y‘j;d'“ and Ys,

CE(So(4r). y7") ifys, =y,

LCE =1 cE(S,(t), herwi
0lff)Ys, otherwise,
Student
(Classification layer) — — Backward
— —— — \
\
_t \
]
] |
COpY PCRwmmm—]  m— | CE Loss
eboch ! UnlearnedYnask
Target Teacher p S S ; Aromax H
forget data V i : / KD L
0SS
Feature layer — — — = =
\ S — Distillation
* Loss

- e e e e e e e -
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End-to-End Unlearning Process

Distillation Loss:
= |n this Loss, the step involves injecting the Teacher’s soft label information from Partial-PGD into Student
m  Zrepresents the double Softmax representation, o represents the softmax function

=  Use of double Softmax to adjust probability distribution from Teacher to convey soft label information to Student
= L p; focuses on creating a similar boundary to the teacher model, ensuring performance while removing Df

information
So(ly), Z
Do)

Lpr =KL (J(

__ [o(Ta(e) ity =y,
o(Sp(¢y))  otherwise,

Student
(Classification layer) / -~ Backward

1
i ||
ol g | | CE Loss
epoch S~ E&Eeamed mask \ .

Target

forget data YV | e P4 == -\“E S KD Loss
Feature layer — ‘Q_ —_— —
. e —] Distillation
, Loss
\ — — /

- e e e e e e e -
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End-to-End Unlearning Process

Final Loss Function Composition:
m  Combines Lcg and Lpr for the ultimate loss function

£=(1—&)-£CE—I-O¢-T2-£D1

= Formation of the unlearning model Mg by merging the feature layer Fgf with the classification layer ./Tg.i

Mo+ = Fge 0 F)

Student
(Classification layer) Backward

, ! \_

| Copy per H | CE Loss

v epoch i Unlearned mask
Target Teacher P e e SR .

forget data y i amm
g L ! KD Loss
Feature layer — —.®—.
» S — ] Distillation
‘ Loss

- e e e e e e e e e e -
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Setup

Datasets: CIFAR-10, Fashion-MNIST, and VGGFace2
Models: VGG16, ResNet18, ResNet50, and ViT

Baselines: Negative Gradient, Fine-tune, Random Label, Fisher Forgetting,
Boundary Shrink, and IWU
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Accuracy (ACC) : Accuracy of a modelMy tested on Dirain Or Diest, § is a the
Kronecker delta function.

SN 8(a(Mo(x:)), i)
N

ACC = 100 -

Unlearning Score (US) : We calculate US through the retain data accuracy(acc:) and

forget data accuracy(accy). A score closer to 1 indicates a higher quality of unlearning
results.

accr) N ( accy
eX — =
100 P 100

2 (exp(1) — 1)

)_

exp(
US(acc,,accy) =
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Results Utility Performance: Accuracy and Unlearning Score (US)

Model VGGI16 ResNet18 ResNet50 ViT

Metrics D, T D;i D,T DyL| US [ D,f D;jI Dint Dyl | US [ D,f DL Dt DL US [ D,f D;jI Dnt DL | US
Original 9998 100 9207 9670 | 0.4494 | 9998 100 93.13 96.60 | 04575 | 9994 9996 9344 950 | 0.4646 | 88.06 9352 81.48 88.40 | 0.4020
Retrain (Optimal) | 99.89 0 91.98 0 0.9390 | 99.79 0 92.50 0 0.9428 | 99.77 0 92.48 0 0.9426 | 95.0 0 81.0 0 0.8631
o | Negative Gradient | 88.53 1696 79.86 17.0 | 0.7320 | 93.85 2838 86.30 25.54 | 0.7204 | 88.75 24.77 8252 2330 | 0.7087 | 85.264 18.69 79.74 167 | 0.7332
- Fine-tune 99.63 0 90.09 0 0.9253 | 99.63 0 91.25 0 0.9337 | 99.45 0 90.79 0 0.9304 | 9096 1.77 8243 1.62 | 0.8598
‘é Random Label | 8099 356 7240 3.69 | 0.7805 | 91.38 11.09 84.00 1098 | 0.8007 | 81.30 1291 76,62 11.84 | 0.7467 | 77.58 15.10 73.42 14.38 | 0.7094
E | Fisher Forgetting | 46.78 5524 44.61 5230 | 0.3414 | 59.0 5234 5557 522 | 03945 | 58.17 58.06 5595 56.20 | 0.3781 | 42.68 66.34 4334 6230 | 0.2911
“| Boundary Shrink | 90.73 10.16 81.53 9.58 | 0.7943 | 95.88 975 87.91 10.24 | 0.8329 | 86.03 394 80.09 346 | 0.8303 | 8522 0.61 7929 0.28 | 0.8498
WU 90.81 0 8235 0.10 | 0.8712 | 89.41 0 82.55 0 0.8733 | 86.11 0 79.98 0 0.8564 | 8248 392 7701 258 | 0.8173
Ours 0007 0 0218 0 0.9405 | 99.07 0 03.53 0 0.9504 | 99.02 0 0352 0 0.9503 | S7.51 0 8T1.14 0 0.8630
Original 99.83 100 94.38 9960 | 0.4579 [ 98.45 9996 94.71 99.70 | 0.4601 | 98.49 99.98 04.68 99.6 | 0.4601 | 91.27 98.71 88.28 97.10 | 0.4210
. | Retrain (Optimal) | 100 0 93.40 0 0.9494 | 100 0 93.38 0 0.9493 | 100 0 93.28 0 0.9485 | 89.44 0 86.76 0 0.9019
« | Negative Gradient | 97.77 0 92.63 0 09438 | 9257 139 90.04 084 | 09183 | 8444 1263 81.42 1022 | 07890 | 71.77  0.10 70.38 0.10 | 0.7964
§ Fine-tune 99.67 0 93.07 0 0.9470 | 97.23 0 91.93 0 0.9386 | 98.83 0 92.85 0 0.9454 | 96.08 0.01 8872 0.10 | 0.9148
= | RandomLabel |98.17 834 9243 2355 |0.7763 | 76.80 1147 7480 11.54 | 0.7375 | 7599 10.77 7373 1072 | 0.7368 | 84.18 1136 82.10 13.04 | 0.7736
£ | Fisher Forgetting | 62.33 28.81 6032 28.10 | 0.5471 | 72.78 57.65 71.03 54.10 | 04705 | 60.59 84.01 6025 82.60 | 0.2958 | 4342 88.01 4260 863 | 0.1972
*;,. Boundary Shrink | 86.88 147 81.66 1.12 | 0.8586 | 95.78 34.54 9231 3240 | 0.7225 | 83.50 30.23 80.60 27.08 | 0.6728 | 7031 204 6874 270 | 0.7665
e WU 99.09 0 93.68 0 0.9515 | 93.82 0 90.80 0 0.9304 | 80.17 0 77.94 0 0.8434 | 82.85 0 81.21 0 0.8645
Ours 9951 0 09389 0 0.9531 | 9798 0 9459 0 0.9579 | 9814 0 0448 0 0.9575 | 90.11 0 87.44 0 0.9066
Original 100 100 96.67 9841 | 04787 | 100 100 95.88 9841 | 04727 | 99.12 9843 9367 100 | 04514 | 9471 96.86 9543 93.82 | 0.4832
Retrain (Optimal) | 99.98 0 96.67 0 0.9740 | 100 0 96.20 0 0.9705 | 99.10 0 94.77 0 0.9596 | 92.63 0 93.32 0 0.9488
~ | Negative Gradient | 96.85 15.67 90.50 4.76 | 0.8915 | 97.32 9.75 89.55 12.69 | 0.8272 | 86.80 473 7879 3.17 | 0.8241 | 91.16 1.63 92.34 0 0.9416
g Fine-tune 97.86 0 89.87 0 0.9416 | 91.42 0 85.91 0 0.8960 | 95.18 0 90.03 0 0.9249 | 96.91 1.63 8485 3.70 | 0.8600
B Random Label | 90.32 1.74 79.11 158 | 0.8384 | 96.76 6.44 87.34 0 0.9059 | 8824 13.19 8243 952 | 0.8007 | 92.06 9.68 91.04 864 | 0.8667
& | Fisher Forgetting | 46.24 31.01 4272 50.79 | 0.3400 | 72.78 57.65 71.03 54.10 | 04705 | 76.28 452 71.83 793 | 0.7455 | 60.80 71.07 53.58 6049 | 0.3472
» | Boundary Shrink | 9948 17.25 93.04 536 | 0.9055 | 94.02 540 86.08 536 |0.8559 | 9385 536 8578 50 |0.8565| 8692 6.46 86.81 425 | 0.8693
IWU 9921 1080 9446 476 | 0.8650 | 75.23 0.17 69.77 0 0.7936 | 78.62 0 69.14 0 0.7899 | 7625 027 78.66 0 0.8479
Ours 99.70 0 06.70 0 0.9743 | 99.70 0 05.34 0 0.9639 | 9746 0 0338 0 0.9485 [ 95.1% 0 05.50 0 0.9651
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Results
Efficiency: Extra data used & Time consumption
: Fisher Fine- Random Boundary
Sl Forgetting tune NG Label Shrink WAl | O
Total Extra ;
o Data Used 45,000 45,000 45,000 5,000 5,000 5.000 5.000 | 5.000
o | Time w/ VGG16 3,683 9,710 433 73 24 116 1351 | 3.76
< | Time w/ ResNetl8 2871 12,526 546 153 30 191 362 4.37
O | Time w/ ResNet50 4,705 19.850 1.061 174 57 471 1513 | 7.76
Time w/ ViT 4.441 13,238 479 78 23 163 1563 | 25.93
G| @t 54000 54000 54000 6000 6000 6000 6000 | 6,000
§ Time w/ VGG16 2,309 8.526 430 85 23 214 1072 | 8.75
g Time w/ ResNetl8 2,768 12,116 582 103 30 715 223 5.19
= | Time w/ ResNet50  5.758 22,013 1,229 206 76 929 967 9.14
4 Time w/ ViT 2,155 8.377 487 80 25 282 546 | 13.39
Total Extra
2 2 / /
%, Data Used 5,726 5,726 5,726 574 574 574 574 574
ZE| Time w/ VGGIi6 1.840 1,295 468 400 17 338 548 5.6
O | Time w/ ResNetl8 1.861 1,354 670 140 27 473 1258 | 6.51
g Time w/ ResNet50 3,721 2,597 3,291 484 157 503 1837 | 17.77
Time w/ ViT 2,155 1,428 665 84 27 187 783 6.74




Ablation Study

Data Usage Ratio:

The class-specific Dy dataset for one class in CIFAR-
10 contains 5,000 samples. As shown in Table 5, we
reduced the dataset size to 50% (2,500) and 10%
(500) for each model to perform the unlearning task.

Original PGD vs. Partial-PGD:

Compares unlearning performance when applying the
original PGD vs. Partial-PGD within our method

Double Softmax:

Unlearning performance with and without double
Softmax in our methods in Fashion-MNIST

Unique Origin Unigque Future

Model VGG16 ResNet18 ResNet50 ViT
Total Extra
Data Used 2,500 500 2,500 500 2,500 500 2.500 500
A Dy, 92.42 92.38 93.51 93.38 93.63 93.37 81.14 81.6
8 th 0 0 0 0 0 0 0 0.1
3 UsS 0.9422 09420 | 0.9503 0.9493 | 0.9512 0.9493 | 0.8640 0.8662
= Time 1.91 1.21 2.28 1.45 3.81 1.62 25.63 14.55
Original PGD Partial PGD
Dy, Dif Time(s) | Dy Dyy  Time (s)
VGGI16 92.03 0 14.18 92.18 0 3.76
ResNetl8 | 92.97 0 18.19 93.53 0 4.37
ResNet50 | 91.84 0 44.15 93.52 0 7.76
ViT 78.07 0 237.36 81.14 0 25.93
w/o Double Softmax w/ Double Softmax
Dy Dy Time(s) | Dy Dip Time (s)
VGG16 | 84.74 0 10.9 93.89 0 8.75
ResNetl8 | 9142 0.1 25.87 94.54 0 5.19
ResNet50 | 80.91 0 93.49 94.48 0 9.13
ViT 87.01 0 61.37 87.44 0 13.39
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Ablation Study

Visualization on Decision Boundary:
= The Figure presents the Original, Retrain, and Ours using tSNE on the CIFAR-10 dataset. The red dots
represent samples of ship images, indicated as D;.

® plane
® car
® bird
cat
® deer
® dog
frog
®  horse
® ship
® truck

(a) Original (b) Retrain
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Conclusion

We proposed a novel machine unlearning algorithm Layer Attack Unlearning:

= Presents Partial-PGD as a layer unlearning method
= Proposes an end-to-end KD framework for enhancing accuracy and eliminating the
forgetting dataset

Our experiments demonstrated success through extensive experiments:

= Modifying specific layers' learning objectives leads to effective unlearning
= Reduces parameters and computational cost, minimizing overall unlearning time

Layer Attack Unlearning offers a promising path for future research:

= Addresses diverse unlearning challenges effectively
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Still Many Challenges on Machine Unlearning (MU) Research

e Developing Practical Machine Unlearning Methods (vs. theoretical)
e Applying MU to Real World Datasets/Approaches

e Exploring LLM unlearning
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Deepfake Abuses are
Prevalent and Increasing!!!



Data-driven Al

Security HCI (DASH) Lab Unique Origin Unigque Future

Malidous use of Generative Al = Creating serious social problems

EE NEWS ia|0|‘ ?_; @lez =

A (EOTRONEEION (RRNUGARE) rovce oA CATRE  SIOWS  FOHITHERME
.

~TRUTHE FAKE
Debunking a deepfake video of Zelensky telling
Ukrainians to surrender

wA& HOR OREE TOP w2

nEoe

Fake news
generation and
propagation

Voice Deepfakes Are Coming

for Your Bank Balance

Artificial intelligence tools have given scammers a potent
weapon for trying to trick people into sending them money.

Deep voices are used for new level
of digital crimes (phishing, 7
scamming, etc.)

Used for general individuals
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The KoreaTimes

South Korea > Society

Deepfakes emerge as threat to presidential

: Next S. Korea Presidential Election on June 3, 2025
election

> DeeVid Al

https://www.koreatimes.co.kr/southkorea/society/20250415/deepfakes-
emerge-as-threat-to-presidential-election
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Serious Social Problems

Demographic breakdown of deepfake videos from top
five deepfake pornography websites and top 14 deepfake

YouTube channels

We analyzed the gender, nationality, and profession of subjects in deepfake videos from the top
5 deepfake pornography websites, as well as the top 14 deepfake YouTube channels that host
non-pornographic deepfake videos.

outh
India 13% korea —
Canad.a Canada
&% 4% YouTube
[ chanrels

LIK
12%

South Korea
25%

Gender

Deapfake pornography is a phenomenon
that axclusively targets and harms women.
In contrast, the non-pormographic deepfake
videos we analyzed on YouTube contained a
rnajority of male subjects.

Nationality

We found that over 20% of deepfake videos on
YouTube featured Western subjects. Howewer,
rnon-Western subjects featured in almost a third
of videos on deepfake pornography websites,
with South Korean K-pop singers making up a
quarter of the subjects targeted. This indicates
that deepfake pormography is an increasingly
alobal phenomenon.

Sharing deepfake intimate images to be
criminalised in England and Wales

Under online safety bill, maximum sentence where intent to cause
distress is proved will be two years

© Offenders found guilty of sharing faked images for sexual gratification could be placed on the
sex offender register. Photograph: Leon Neal/Getty Images

Sharing deepfake intimate images is to be criminalised in England and Wales.
Amendments to the online safety bill will make it illegal to share explicit
images or videos that have been digitally manipulated to look like someone
else without their consent.
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C Faceswap ) (Reennacment) ( biffusion )

ProGAN  VQGAN

DDIM PNDM LDM

GAN or DM? In-depth Analysis and Evaluation of Al-generated Face Data for Generalizable Deepfake Detection
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Table 3: Systematic Classification of Deepfake Detectors. In conceptual framework representations, white nodes indicate no
papers fitting the category, half-colored nodes represent partial category representation, and fully colored nodes signify complete
representation within the category (see Appx. Table 7 for details on detectors). The "FF++ Score" column displays each detector’s
performance on the FF++ dataset. Detectors marked with 1 were selected for further evaluations in Sec.

SoK: Systematization and Benchmarking of Deepfake Detectors

in a Unified Framework

Focus oF DISTINCT TECHNIQUE OF CONCEPTUAL FRAMEWORK v Y DETECTOR FF++
METHODOLOGY DETECTOR ARCHITECTURE REPRESENTATION ENUE EAR NAME Score
Capsule Network ICASSP 19 C::lp.]:ozensicsf [85] | 96.60 (AUC)
Depthwise Convolutions wcev 19 Xcep‘tiunNelf 98] 99.26 (ACC)
. . . . * Face X-ray Clues CVPR 20 | Face X-ray [71] 98.52 (AuC)
Binh M. Le Jiwon Kim Simon S. Woo CF #1. ConvNer Unified Methodology CVPR 20 | FFD[106] -
. . . . . . Models Bipartite Graphs CVPR 22 | RECCE [6] 99.32 (AUC)
Sungkyunkwan University, S. Korea Sungkyunkwan University, S. Korea Sungkyunkwan University, S. Korea Consistency Lase oveew | 22 | CORB[87] 0994 (AUC)
bmle @ g.skku.edu merwl0@g.skku.edu swoo @ g.skku.edu Face Implicit Idenities CVPR 23 | 1D [49] 9932 (auc)
Mudtiple Color Spaces WACVW 23 MCX-APT' [127] 99.68 (AUC)
4 Siamese Training ICPR 20 | EfB4AMT [3] 94.44 (AUC)
: : : < - Intra-class Compact Loss AAAI 21 LTW [107] 99.17 (AUC)
=
Kristen Moore Alsharif Abuadbba Shahroz Tanq & CF#2, Spgiﬂﬁ‘i Muiti-attention losses CveR 21 | MAT' [132] 99.27 (AUC)
CSIRO’s Data61, Australia CSIRO’s Data6l, Australia CSIRO’s Data61, Australia 2 Intra-instance CL Asal | 22| DCL [108] 99.30 (avc)
; X . ] X . 5 Self-blend Image cvPR 22 | SBIs' [102) 99.64 (AUC)
kristen.moore @data61.csiro.au sharif.abuadbba@data61.csiro.au shahroz.tarig@data6l.csiro.au = [CF#3. ComvNer Adversarial Learning ACMMM | 21 | MLAC[7] 8820 (AUC)
E Models with Learning | High Frequency Pattern CVPR 21 | FRDM [77] -
@ | Strategies Meta-learning Neurtps | 22 | OST[8] 98.20 (AUC)
CF #4. ConvNet with Identity Representation CVPR 23 | CADDM! [27] 99.70 (AUC)
Specialized Networks Collaborative Learning wcev 23 QAD [63] 95.60 (AUC)
Facial & Other Inconsistency CVPR 22 ICT' 28] 98.56 (AUC)
CF#5, Sei‘f;‘o’;’:z Unsupervised Inconsistency ECev 22 | UIA-ViT [137] 99.33 (AUC)
Action Units CVPR 23 AUNet [2] 99.89 (AUC)
Facial Attentive Mask ACMMM 20 | ADDNet-3d [138] 86.69 (ACC)
" Anomaly Heartbeat Rhythm ACMMM | 20 | DeepRhythm [90] 98.50 (acc)
5 Multi-instance Learning ACMMM 20 | S-IML-T [72] 98.39 (AcC)
é CF #6. ComvNet Time Discrepancy Mode{!{:g IICAI ‘21 TD-3DCNN [130] 72.22 (AUC)
1 = Models Global-Local frame learning IICAI 21 DIA [48] 98.80 (AUC)
Disrvaicc Divecricn Dara & Mocei. B : Local Dynamic Sync AAAIL 22 DIL [41] 98.93 (ACC)
e.lfwe Pl B ore L 2 Faces Predictive Learning AAAL 22 | Flnfer [47] 95.67 (AUC)
e Contrastive Learning ECCV 22 HCIL [42] 99.01 (AcC)
E Alternate Modules Freezing CVPR 23 Altheezingf [126] | 98.60 (AUC)
( Image ) vaoluﬁo@ E CF #1. ConvNet with SpatioTemporal Inconsistency ACMMM 21 STIL [40] 98.57 (ACC)
Processing Models 5 | Specialized Networks | Reading Mouth Movements CVPR 21 | LipForensics' [44] | 97.10 (Auc)
Special Face Single (Spedalised) C Leamlqg) g | &Learning gies | Temporal Transf icev 21 | FTCN' [134] -
Artifacts Frame Networks St = Combine ViT and CNN ICIAP 21 | CCWITT [14] 80.00 (ACC)
CF #8. Sequence . . t
Multiple Models Spatial-temporal Modules WWW 21 CLRNet' [116] 99.35(F; )
Frames Unsupervised Learning NeurlP$ 22 LTTD [43] 97.72 (AUC)
4 Frequency Learning ECCV 20 | F3-Net[91] 98.10 (AUC)
13} Single-center Loss CVPR 21 FDFL [69] 97.13 (AUC)
H CF . C;,’ﬁi:; Phase Spectrum Learning VPR 21 | SPSL[75] 95.32 (AUC)
g | Spatial & Frequency Learning AAAL 23 | LRL[11] 99.46 (AUC)
z ?F #10. ﬁ;’;’;’“;"iw”” SpatioTemporal Frequency ECCv 20 | TRN[79] 99.12 (AUC)
9 | wequence Hode: « Knowledge Distillation AAAL 22 | ADD! [64] 95.46 (ACC)
& | Learning Strategies
) o
o gfr:::k i"g;‘::fjd Intra-Syne with Frequency ECev 22 | CD-Net [105] 98.50 (AUC)
& . 8 Collaborative Learning CVPR 23 SFDG [125] 95.98 (AUC)
& | Strategies
= Region Tracking CVPR 21 RFM [122] 99.97 (AUC)
] Facial Features Modeling CVPR 21 FD2Net [136] 99.68 (AUC)
-
£ | CF#12. Cﬂ'ﬂ‘;” ‘;" 2nd Order Anomaly CVPR 22 | SOLA [37] 98.10 (AUC)
> € Audio-video Anomaly CVPR 23 | AVAD [38] -
j Grad Pattern Learning CVPR 23 | LGrad' [110] 66.70 (ACC)
h /larxi /pdf/2401.04364 2 | P o |
. 3 - Dequence Te [ Landmark Learni CVPR 21 | LRNet! 99.90
= N N emporal Landmar] arning et’ [109] .90 (AUC)
pS . a rXI V . O rg pd O . 0 3 6 & g;’ﬁ;z’;h Learning | \oise Pattern Learning AAAL 23 | NoiseDF [123] 93.99 (AUC)
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e Our group have researched deepfake detection and generation since 2017.

e We have published several top conference papers (AAAI, NeurlPS, WWW, ICML, ICCV) on deepfake detection, more than 25
publications in this area.

e Also, we have created and released deepfake video-audio dataset, “FakeVCeleb“.
e In addition, we have 2 international patents and transferred the deepfake detection technology

e We organized the workshop on deepfake and cheapfake (WDC) workshop 4 years in a row .

ﬂ

Raw image

FAKE Aupio & REAL VIDED
Pre-trained teacher model from ( A Iv’R)

high-quality raw images 0.8
— w — |z
Fake Rea

ML - — 'll'llllllllll l|l'|||l||||" l||||||||||||| ||]||||||||||| llllllllllllil I||l|||lI|||ll l||I|||I||'|II |l ||||||'|n ||||'|||||||u ||||||||||||||

Frequency
Attention ﬁ‘" I/J Attention C£ Loss
Distillation Distillation FAKE Aupio & FAKE VIDED

j ] T (AxVr)
) I F Arrican Asian Asian Caucasian Caucasian
A\ (Brack) (Sou‘ru) (Eas*r) (Amemcan) (European)
0 4 ‘V "". ‘
1l\cRcll o z i
Student model trained from » /S \

low-quality compressed images

Low-quality
compressed image

II|I|||I||||II ||||||||||||n ||[|||||||]||| |||||||||||||| ||||||||||I||| |||||||||||||| ||||||||||l||| ||||||||||'|n r|]|'|||||'|u ||||||||||||||

RFP Z=1) Woo etal., (2022). ADD: Frequency Attention and Multi-View Based https://sites.google.com/view/fakeavcelebdash-lab/
Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images.
in Proc. of AAAI 2022 (pp. 122-130)
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Still Many Challenges

e New generation methods (Attack and Defense)
o How to handle new attacks and generation methods?

o Isthere a way to leverage existing architectures or pre-trained models?

e Challenges to generate new training dataset

o Lack of training dataset?

o Leverage existing dataset?

e Generalization & Explainability
e Low Quality Deepfakes

e International Synthetic Media Mitigation Efforts



Generalization

= Detection methods mainly assign various

models to each quality of deepfake (ADD,

BZNet), causing prohibitive overhead.

= |n this work, we develop a unified model that can
detect deepfake from various quality, called

quality-agnostic deepfake detection (QAD), and

improve overall performance.

c23 raw

c40

AUC

Baseline 1 - one model

Unique Origin Unigque Future

Baseline 2 - n models

Ours - one model

rD o & oo 3
O R PR p R (N
- - /[) - &
Baseline 1
Baseline 2
B Ours
98.8 98.6 911 943
675 73.6
raw c23 c40
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Quality-Agnostic Deepfake Detection with Intra-model
Collaborative Leaming

Binh M. Le Tand Simon S. Woo* !

Sungkyunkwan University, Suwon, South Korea [/

IEEE/CVF International Conference on Computer Vision 2023
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Notations

= A raw sample and its compressed version at quantile ¢ are expressed as:
Xe =Xy —C

= Training dataset D = {(x;,y;)}ie; € X XY

= Learning network  f: X — R? (binary prediction)

= Lossfunction L:R*?xTY - R

= We considerlossas L(f(x),y) =1-o07(f(x),y) (o is soft-max function)

37
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Theorem and Our Motivation

For any network f, and with probability 1 — 6 over the draw of D:
E[I{p(x.) # y}] < 2EpL(f(x.),y)

b EnLi- oo (£ (20, f(x)

log2/6
2n

16
+ 4915 (D) + "y + 0

\

Where Ny is Rademacher complexity, ®y, = {L(f (x,),y)}, and

Licot(f O, fx)) = Nf () — Fx)l

38
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Theorem and Our Motivation

Minimizing expectation error by minimizing classification loss and collaborative loss

Expectation error Classification loss

Apply Adversarial Weight
Perturbation (AWP) to robust
the model to corruptions

E[I{y(x.) # y}] < 2EpL(f(x), )

| 8
Instance-based collaborative loss > + ? IED Li— col ( f ( X c)» f (xr))

Apply Hilbert-Schmidt Independence
Criterion (HSIC) to encourage
geometrical similarity of raw data and
the compressed data

39
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Training scheme

High-qualrity

images
n
+—
=
oy
7]
=
=
()
-
@©
o o
n
\\‘
Low-quality

compressed images
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Training scheme

B class0 BMclass 1 —= loss contour

Lo

AWP in Weight loss landscape

= ¢": worst-case perturbations of model weights (significantly increase the loss).
= ¢" are generated by adversarial methods:

¢* = arg max L(fo+(x),¥)

41
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HSIC

Training scheme ..
o e

» HSIC measures the dependency between two random variables U and V via kernel k.
= A mini-batch included two quality  and p at layer ['! are Z[ and Z,, collaborative loss:

L.oi(T,p) = — Z ASIc(z},2!)
l

42
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Overall training scheme

A mini-batch B include M quality modalities T = {r, c4, ..., cM—1}, €nd-to-end training
objective:

~

AWP

1
LQADzm Z Ly (x75,7) | w'
T€ET,lEB r.

T#p HSIC
o ©
+a Z Lcol(T,p) o
T,p€ET lnm__h./.\.
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Experimental results

Datasets (7): NeuralTextures (NT), Deepfakes (DF), Face2Face (F2F), FaceSwap
(FS), FaceShifter (FSH), CelebDFV2 (CDFv2), and Face Forensics in the Wild
(FFIW10K).

Compression (1+2): H.264 with quantile rate of 23 and 40: raw, c23 and c40.

Backbone (2): ResNet50 (QAD-R), and EfficientNet-B1 (QAD-E).

Baselines (8): MesoNet, XceptionNet, F3Net, Fan&Lin, SBls, MAT, ADD, BZNet

44
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Experimental results

Quality-agnostic: baselines models don’t know input quality

Test Set AUC (%) | Test Set AUC (%)

Model I

Model
| NT DF F2F ES FSH CDFv2 FFIWIOK | Avg I NT DF F2F ES FSH CDFv2 FFIWIOK I Avg

Video Compression (raw + c23 + c40 of test set) Random Image Compression (JPEG on raw of test set)
MesoNet [ 1]¢ 70.24 9372 9415 8517 96.00  80.52 94.56 87.77 MesoNet [1]¢ 70.23 92,02 8§8.32 8260 91.84 81.12 91.87 85.43
Rossler eral. [45]© | 89.64  99.05 97.89 98.83 9850  97.49 99.17 97.22 Rossler er al. [15]9 | 69.89  98.62 9497 96.66 96.76  96.98 98.81 93.24
F3Net [43] ¢ 86.79 9873 9632 97.82 9745 9506  97.94 | 9573 [73Net [43]0 70.95 97.80 92.83 9634 9472 9544 97.19 | 92.19
MAT [7]° 86.79 98.73 96.32 97.82 9745  95.06 97.94 95.73 MAT [67] ¢ 69.53 98.96 9553 97.99 9697  98.21 98.91 93.73
Fang & Lin [11] 89.30 98.98 9733 98.43 98.66  96.58 98.94 96.89 Fang & Lin [ 1 1] 7549 9832 9463 97.64 9728  96.67 98.39 94.06
SBIs [51]F 78.33 95,19 7974 80.37 8048 - - 8§2.82 SBIs [51]T 7775 9783 8205 86.10 8542 _ i 85.83
BZNet [32]' 80.12 98.81 94.10 97.71 - - - 91.01 BZNet [ 2] 79.00 98.77 9523 97.92 - - - 92.73
ADD [31]T 86.26  96.23 90.62 9557 9594 - - 92.92 ADD [31]f 75.84 96.83 9223 9524 96.00 - - 91.23
QAD-R (ours) 91.25 99.54 9834 99.01 99.12 98.36 99.10 97.82 QAD-R (ours) 75.18 98.86 93.72 98.52 0O8.18 98.51 98.96 94.56
QAD-E (ours) 9492 09953 9894 99.27 99.12 98.38 99.16 98.47 QAD-E (ours) 76.27  99.20 94.44 98.69 98.60 98.52 08.86 94.94

Video compression Random JPEG compression
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Experimental results

Quality-aware: baselines models know input quality, except for our QAD

Method w/ prior infor. ! #params festSet AUC (%)

NT DF F2F FS FSH CDFv2 FFIWIOK | Avg
BZNet [32]7 [x3] Y 22M x 3 | 91.01 99.30 96.90 98.82 - - - 96.51
ADD [2177 [%3] Y 235M x 3 | 89.08 99.25 09653 098.21 98.25 - - 96.26
RESNETS0 [ %3] Y 235M x 3 | 8896 99.26 97.04 098.63 98.71 97.09 98.58 96.90
QAD-R (ours) 235M x 1 | 88.85 99.42 07.77 0O8.83 9893 97.56 08.93 97.18
EFFICIENTNET-B1[ < 3] Y 6.5M x 3 | 87.63 99.05 96.72 98.16 97.95 96.70 08.54 96.39
QAD-E (ours) 6.5M < 1 | 92.25 9946 98.30 99.08 98.90 97.50 99.01 97.79

Video compression
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Ablation studies

ReEsNET-50
Model / loss
ACC (%) AUC (%)

Baseline 78.8 88.2
Soft-label 77.0 84.0
Pairwise loss 79.7 80.1

Coll. loss
Center loss 79.8 88.9
HSIC 80.3 90.1
AWP-KL 80.9 89.4

Adv. loss
AWP-XE 81.7 90.7
QAD (ours) 82.2 91.3

Table 4. Performance (ACC & AUC) of
RESNETS50 integrated with different loss func-
tions.

Pairwise differences of
various quality image
representations at the
output can hinder its
convergence.

AUC
a1+

88~

B5-

85

Figure 3. Model’s performance versus « and
~ on the NeuralTextures.

Increasing y improve
performance. When a >
2e — 3 : model’s

performance is stable.

" Real: raw

X Real: c40

) Fake: raw

X Fake: c40

Figure 4. t-SNE visualisation of base-
line and our QAD.

QAD’s representations are
less dispersed both in terms
of intraclass and inter-quality.
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https://www.reddit.com/r/StableDiffusion/comments/161n6sd/donald_tr
ump_jail_photos_made_with_stable/?rdt=49256
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https://www.theguardian.com/us-news/2024/mar/04/trump-ai-generated-
images-black-voters
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'STABLE DIFFUSION

W - IS

1 NSFW Al IMAGES

V 7 g

https://jimclydemonge.medium.com/this-website-can-generate-nsfw-
images-with-stable-diffusion-ai-1ee2913de829
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Suppressing Synthetic Content Generation
and
Concept Erasing

Hong S, Lee J, Woo SS. All but one: Surgical concept erasing with model preservation in
text-to-image diffusion models. In Proceedings of the AAAI Conference on Atrtificial
Intelligence (AAAI) 2024 Mar 24 (Vol. 38, No. 19, pp. 21143-21151).
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All but One: Surgical Concept Erasing with Model
Preservation In
Text-to-Image Diffusion Models

Seunghoo Hong, Juhun Lee and

.. Simon S. Woo* .
Department of Artificial Intelligence, Sungkyunkwan University,

Suwon, South Korea
hoo0681@g.skku.edu, josejhlee @g.skku.edu, swoo@g.skku.edu

g

https.//dash-lab.github.io/
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Diffusion Models

Diffusion models has show impressive image modelling capability.

o Forward Diffusion

ol 0¥ 0=0=0)
A NN /)

e

-~ Reverse Dallasion

-_‘\'. q“\'pah:r
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Scalability in Diffusion Models

The joint development in dataset acquisition enabled
“foundational” generative performance.

large scale dataset Extrapolative

data generation

Latent Diffusion Model

Diffusion Model

Latent Space
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Ethical Issues In Large Datasets
Not Safe For Work (NSFW) Content Generation
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Ethical Issues In Large Datasets

The joint development in dataset acquisition enabled
“foundational” generative performance.

Model synthesizing close to real images
NSFW content in LAION dataset

:hﬁi'ﬁ";

; ’
' ¥
' 5 (!
6 A f ot
! i
’

Erin Hanson
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DDIM INVERSION
Fi me tuned

& Van Gogh Style
€ Dry brushing

& Image of pig
€ Image of cow
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Concept Ablation

To circumvent retraining, fine-tuning methods were proposed to
delete the target concept.

ESD & SDD Ablating & Forget-me-Not

® object disintegration ® |ess competitive erasing
® slow convergence

spp (RCT L RN

0le®n  0le®
S ACL IR ACT

In our work, we achieve both good concept erasure while preserving the model’s utility.
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Our Method (1)

The conditional score Vlog P(z]c) is:

Vlog P(z|c) = Vlog P(z:|0) + AV log P(c|z)

The goal is to update this latter term:

V log P(c|z) N Vlog P(c'|z)
Original Alternate
guidance guidance

Then, our objective can be formulated as:

objective: arg m&n[quVlog P(c'|z) — vV log P(c\zt)H%]
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Our Method (2)

To sample the alternate guidance termV log P(C’\Zt) , the key

consideration is:
Keep the model’s update to the minimal.

Introduce only relevant signal to the fine-tuning.

SEGA shows that semantic signal is concentrated at the extremes of €(+).
With an alternative concept pre-assigned:

(Zt, @) e = E(C”) S 5

Semantic space projection

s e(c)) ' discard i
(2, ")
- U-Net

> €(0)

Ultimately, we obtain the alternate guidance term:

Viog P(c'|z:) = 71(eg+ (21, c)—€g+(21)) + 6( C'?Zt,é’*)) 7



Unique Origin Unigque Future

Our Method (3)

Recapitulating, we update the concept in the conditional score:

Vlog P(z|c) = Vlog P(z|0) + ~V log P(c|z)
For updating concept:

mein E, +[||71V log Py« (c'|2z:) — 72V log Py(clz)|I3]

£c011cept(ca Cla Zt7’71772) — H’Y2 (69 (zt7 C) — €9 (zt) . Sg()) ! (69* (Zt? cl) — €y~ (Zt? )) Hg
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Erasing timeline during fine-tuning in respect to a single seed every 10
iterations (last at 450). Spatial consistency is preserved even.
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Our Method (4)

The style of erasing can depend on the end user or the target concept.
In addition to the cc ‘ ite, we preserve the null token’s representation.

preserving null token

V log P(z|c) =[Vlog P(z,]|0)|+ vV log P(c|z)

For preserving the null token’s representation:

s. t.Vlog Py« (z:) —|Vlog Py(z:)|=0, Vz,t =1,...,T,

Lpenalty(ta Zt) - ||€9(zt7) — €~ (Zta )H%

Ultimately, the final loss is:

Emodel — EZtNPQ* (Zple ), e,e" it [Econcept o )\»Cpenalty]
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Experimental Result (1)

To quantify model’s utility preservation,we use FID, KID, CLIP Score,
and SSIM. To quantify concept erasure, we use NudeNet’s score.

Method NudeNet(%)] FID|  KIDJ CLIP Scoref SSIM?

SDvl.4 0.69 13.59  0.00479 0.2765

ESD 0.04 1427 0.00421 0.2619  0.231
SDD 0.05 14.11  0.00499 0.2677  0.309
Ablating 0.45 13.68 0.00478 0.2756  0.657
Forget-Me-Not  0.66 13.78 0.00496 02732  0.476
Ours 0.33 13.19 0.00447 0.2762  0.762
COCO 0.2693

Erasure evaluation under increasing iterations
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Experimental Result (2)

Visualization of “nudity” erasure across iterations.

While competing methods either completely change the generation
(ESD,SDD) or erases weakly (Ablating-Concept), our method achieves
both preservation and erasing.

“Nudity” Erasing

0.7 SDv1.4 Reference Image  —— Ablating-Concept
'~ —5SDD

— ESD

—— QOurs(Lambda=0)

—— Ours(Lambda=1)

©
n

o
P

o
w

Average Nudity Confidence

°
N

o
-
{
\
\
/
/
b
{
[
\

0.1723 0,1587
° '3

e N a . e 3 N > . W
\ ~

0 200 400 600 800 1000

Iteration
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~_images ESD Forget-Me-Not SDD Ablation Ours

\\I..nn._i L\m_ ﬁv..«.._ a3

“Nude women” FEESEESS ‘ﬂ... 8e ‘ﬁ-.. e lei 2
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Experimental Result (3)

Given a denoiser, one can apply DDIM inversion to real images.

Tip1 — Tt = /01 [(m M) Ty + (\/1/dt+1 —1-/1/a - 1) 69(%&)]

Our loss formulation leads to a DDIM inversion with concept ablation.

Reference
__images ESD Forget-Me-Not SDD Ablation Ours

: “A_ »
“Nude women” RS ‘nu & W ?au &

r(\vW(\|W(\|W(\ V(\v

“Nude woman”

“Nude Statue”

12
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Still Many Challenges on Deepfake Research

e New generation methods (Attack and Defense)
e Challenges to generate new training dataset

e Generalization & Explainability
e Low Quality Deepfakes
e Real World Deepfake Detection

e International Synthetic Media Mitigation Efforts
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