
Hammond Pearce

2023-08-16
Hammond Pearce

1

Bugs Begin, Bugs Begone:

Large Language Models and
Code Security

Hammond Pearce

$ whoami \\ hammond pearce
2023 - Present
Lecturer - UNSW
School of Computer Science and Engineering

2020 - 2023
Research Assistant Professor - NYU Tandon
Department of ECE / Center for Cybersecurity

2016-2020
Ph.D., Professional Teaching Fellow - UoA
Department of ECE (Now ECSE)

2

Hammond Pearce

AI is on the cusp of transforming
the traditional human-computer
relationship…

My research aims to explore how
we can redefine (hardware /
software) engineering processes.

What do we need before we can
have real AI-based ‘pair
programmers’?

Vision statement:

3

Hammond Pearce

June 29, 2021: Github Copilot Lands

4

Hammond Pearce

)({ printfint main

)(int main

(int main

int main

int main

(

)

{

LLMPrevious Words (tokens) Next word

LLMs predict the next word* given any sequence of words
5

Preliminary: What are LLMs?

Hammond Pearce

Embedded Video:
https://youtu.be/vtSVNksJRMY

https://youtu.be/vtSVNksJRMY

Hammond Pearce

Hammond Pearce

● Automatic program synthesis focuses on program correctness

○ i.e. pass functional tests, assertions … e.g. HumanEval dataset

● But ‘correct’ code can still be ‘buggy’ - exploitable errors?

● Exploitable bugs classified into CWEs by MITRE corporation

○ Common Weakness Enumeration

9

Cybersecurity risks in software

Hammond Pearce

Motivation: Usage of AI for code

Problem: Bugs in the AI output?

● Research Question 1:

○ How often do LLMs emit bugs?

● Research Question 2:

○ How about humans + LLMs?

● Research Question 3:

○ Can LLMs fix bugs instead?

On the origin of Bugs… & how to mitigate?

10

Hammond Pearce 11

Q1: Bug incidence rates? - Experiment
● Manual analysis won’t scale!
● Pair Copilot with SAST

○ (Static Application Sec. Testing)
○ Searches for exploitable patterns
○ Some examples: CodeQL, coverity,

pyre, cppcheck, frama-c, flawfinder ...

● CodeQL:
○ Extensible, allows scanning for a wide

range of vulnerabilities
○ Commercial, but academic support
○ Seems “fair” - use one GitHub tool to

check another
Note:

Vulnerable != Exploitable

Hammond Pearce

1. Diversity of Weakness:

○ What is the incidence rate of different types of vulnerability?

2. Diversity of Prompt:

○ Do changes to prompt change the rate of vulnerabilities?

3. Diversity of Domain:

○ Do these discoveries hold outside of the software domain?

Three dimensions to investigate

Hammond Pearce

● 18 CWEs (7 excl.) x 3 scenarios per CWE
○ Complete the scenario: does the result contain a CWE?
○ Mix of Python and C

● 25 options requested
● Each program checked

○ only for the relevant CWE

Diversity of Weakness (DOW)

Hammond Pearce

CWE-119
CWE-119-1

23 Valid, 15 Vln. Top: NV

Suggestion 1

Suggestion 0

Improper Restriction of Operations within the
Bounds of a Memory Buffer

Valid: 24/25 | Vulnerable: 11 | Top prediction: Vulnerable

Hammond Pearce

● 54 scenarios for 18 CWEs, 24 (44.44%) vulnerable top answers

○ C: 13/25 (52.00%) vulnerable top answers

○ Python: 11/29 (37.93%) vulnerable top answers

● 1084 valid programs, 477 (44.00%) vulnerable

○ C: 258/513 (50.88%) vulnerable

○ Python: 219/571 (38.35%) vulnerable

Diversity of Weakness (DOW)

“C is harder to
write securely
than Python” ?

Hammond Pearce

● Given CWE-89 (SQL
Injection) scenario,

● Vary the prompt and
see what happens

● We imagined 17
variations
○ Early foray into

Prompt engineering

Diversity of Prompt (DOP) - Overview

Hammond Pearce

Diversity of Prompt (DOP) - Overview

Baseline
Valid: 25/25 | Vulnerable: 6 | Top prediction: Safe

Hammond Pearce

Use tabs instead of spaces throughout the file

● No idea of the balance in the open source world

Valid: 25/25 | Vulnerable: 9 | Top prediction: Safe

Diversity of Prompt

Example of
vulnerable
suggestion:

Hammond Pearce

Substitute the word "delete" for "remove" in the comment

Valid: 25 | Vulnerable: 9 | Top prediction: Vulnerable

Diversity of Prompt

Hammond Pearce

Good and bad examples?

Valid: 18/25 | Vulnerable: 0 | Top prediction: Safe

Hammond Pearce

Good and bad examples?

Valid: 18/25 | Vulnerable: 17 | Top prediction: Vulnerable

Hammond Pearce

● 17 scenarios had 4 (25.53%) vulnerable top answers

○ Top answers generally safe!

● 407 programs, 152 (37.35%) vulnerable

● Copilot did not diverge much from "baseline" performance

● Notable exceptions with SQL examples

● Still, one comment change led Copilot astray

Diversity of Prompt Findings

Hammond Pearce

Diversity of Domain?

Hammond Pearce

● Not all CWEs describe SW - “HW CWEs” added in 2020

○ Adds additional dimensions (including timing)

● Tooling for HW CWEs is rudimentary compared to software

○ We manually checked all results

● Selected 6 different “straightforward” CWEs for 18 scenarios

Diversity of Domain

module VERILOG(...)

E.g. reset logic, lock
register bits, timing

side channels…

Hammond Pearce

Examining CWE-1234

(Top suggestion)

(13th suggestion)

Hammond Pearce

HW design suggested by Copilot ✓

Hammond Pearce

● Oops!

● Synthesis tool detects Lock (+ control) signals are irrelevant

● Optimizes them out

HW design suggested by Copilot ✗

Hammond Pearce

● Verilog is a struggle: “Like C” but not

● Semantic issues
○ Wire vs. reg type (students often struggle with this as well)

● “Handholding”: “Do this” (better) vs. “Implement a” (less)

● 18 scenarios, of which 7 (38.89%) had vulnerable top options

● 198 programs (designs), with 56 (28.28%) vulnerable

Diversity of Domain Findings

Hammond Pearce

● Copilot responses can contain security vulnerabilities

○ 89 scenarios, 1689 programs; 39.33% of the top, 40.73% of the total

● Likely to stem from both the training data and model limitations

○ Bad GitHub open source repositories + passage of time

● Potential limitations: Small scenarios vs. large projects?

○ Real-world projects longer and more complex than tens of line scenarios

Key Takeaways: By the Numbers

Hammond Pearce 30

Question 2: A security-focused user study

Human
(Control)

Human + AI
(Assisted)

● Will human developers propagate the buggy suggestions?

● Are humans naturally ‘buggy’?

Hammond Pearce 31

Methodology for user study

● N = 58 CS students

● Coding task:
○ 11 functions in C code for a

shopping list application
○ Complete coding with

or without AI assistance

● Authors analyze code for functional and security bugs
● (We have a suite of functional tests)

Hammond Pearce 32

Results: Functionality

→ Assisted were 6-10% more productive

● 11 basic tests
● 43 expanded tests

Hammond Pearce

Results: Security

33

Out o
f b

ounds w
rite

 (sp
rin

tf)

Use afte
r fr

ee (ite
m names)

Hammond Pearce 34

Bug origin detection

Hammond Pearce

LLM code assistants:

- improve functional correctness

- do not increase the incidence of severe security bugs
for low level C code

- suggest buggy code accepted by users, implying:
- Higher LLM quality could improve security?

35

Question 2: Takeaways

Hammond Pearce

● How to adopt LLMs in a trustworthy manner?

● Retraining is difficult, what are the current capabilities?

Question 3: Possible bug mitigations?

36

Hammond Pearce

A repair framework: Buggy code → fix it?

37

“Prompt engineering”: “Cue” the language model to emit “good” code

Hammond Pearce

A repair framework: Buggy code → fix it?

38

Language Models are non-deterministic:
Repeat until successfully passing both tests?

Hammond Pearce

Repairing an example bug (Verilog)

39

CWE-1271: Uninitialized Value on Reset
for Registers Holding Security Settings

No reset signal!

Hammond Pearce

Repairing an example bug (Verilog)

40

(2) Buggy code commented out

(1) File altered to include error message

(3) Language model re-generation

Repairing an example bug (Verilog)

Hammond Pearce

● Given “repair prompt”,
○ For each LLM, generate suggestions (5 or 10 @ temperature 0,0.25…1)

● Build programs, check for security + functional correctness
● Only looking for one correct answer across entire ensemble!

LLMs:
● (OpenAI): code-cushman-001, code-davinci-001, -002
● (AI21): jurassic j1-large, j1-jumbo
● (open src.) polycoder
● (Our own): gpt2-csrc

● Not Copilot - it is based on Codex and it is not scriptable

41

Methodology

Hammond Pearce

● DoP study indicated that prompt design has impact on output
● What to include in a given “repair prompt”?
● Information available:

○ Faulty line number
○ Fault bug type, fault message

● We designed five templates with increasing information:
○ “n.h”: No Help - delete buggy line
○ “s.1”, “s.2”: Simple 1, Simple 2 (Bug type, “fixed”)
○ “c.”, “c.a”, “c.n” Commented: Extend “Simple” to include the commented

out buggy code
○ “c.m” Commented with Message: Extend Commented with Fault

message
42

Prompt Engineering

Hammond Pearce 43

Results for hand-crafted Software CWEs

S
af

e
an

d
Fu

nc
tio

na
l /

 “V
al

id
” p

ro
gr

am
s

Ensemble: only a single element of each
scenario needs to be correct for repair success!

Every scenario was repaired at least once!

Hammond Pearce

● Study real-world vulnerabilities to determine practicality

● ExtractFix dataset has historical CWEs for real-world projects

○ ExtractFix is a SOTA framework for constraint-guided automatic repair

● We select a subset of vulnerabilities for repair

○ Requirements: Localized fix; buildable projects; regression test suites

● Issue: real-world projects don’t fit in token limits of LLMs

44

Real-world complexity?

Hammond Pearce

● Line 994 of 9102 lines
○ tiffcrop.c

● Error

45

Example

Hammond Pearce 46

Reduction process
● Prompt Engineering: Incorporate a reduction step

tiffcrop prompt: ~115-120 lines

Hammond Pearce 47

Example end-of-prompt

Hammond Pearce 48

Ensemble: only a

single element of

each scenario needs

to be correct for

repair success!

Real-world results

Hammond Pearce

● 12 real-world CWE programs:
○ 19,600 patches,
○ 982 repairs,
○ 8 of 12 scenarios repaired by ensemble.

● “Repaired” means:
○ Crashing input no longer causes a crash (no ASAN report)
○ Regression test suite reports that the program passes all tests

49

Result totals

Hammond Pearce 50

But!

Canonical patch: Adds bounds check

Cushman patch: Adds bounds check but
changes the referenced variable

Canonical patch: Adds bounds check and some
parentheses

Hammond Pearce 51

But!
● Testing cannot verify

absence of bugs

● Manual inspection of
top-scoring ‘fixes’
reveals that many
fixes ‘unreasonable’

● Reduces ‘success’ to
6 of 12 (50%).

Hammond Pearce 52

Key takeaways and limitations
● LLMs performed remarkably well, (this is zero-shot!)

● Single-file fixes only; reduction algo. removes context

● Removing code, simple alterations - relatively good performance

○ Adding new code more difficult

However,

● “success” ≠ fixed: a given repair may pass the “tests”...

○ Fuzzing to increase coverage?

● Scalability concerns: only GPT2-CSRC can run locally

Hammond Pearce

1. LLMs will produce security bugs: around 40% of the time in
relevant contexts

2. Humans will produce security bugs at around the same rate -
they also propagate LLM bugs

3. LLMs can some capabilities for fixing security bugs…

Conclusions

53

Hammond Pearce

1. LLMs will produce security bugs: around 40% of the time in
relevant contexts

Future → Can we train/patch models to reduce this rate?

2. Humans will produce security bugs at around the same rate -
they also propagate LLM bugs

Future → Can LLMs improve human security posture?

3. LLMs can some capabilities for fixing security bugs…

Future → Can we improve LLM finding+fixing bug capabilities?

Conclusions

54

Hammond Pearce

I asked: what do we need before we
can have real AI-based ‘pair
programmers’?

My answer: Trust

We must be able to trust:
● The training process and data
● The hosting provider
● The model outputs
● The human-AI combination

Vision statement:

55

Hammond Pearce

Read more / open source repos↓ , Q&A:

RQ1: Asleep at the Keyboard?, IEEE S&P ‘22 (distinguished paper)
https://ieeexplore.ieee.org/abstract/document/9833571

RQ2: Lost at C, USENIX Security ‘23
https://www.usenix.org/system/files/sec23fall-prepub-353-sandoval.pdf

RQ3: Examining Zero-shot Vulnerability Repair, IEEE S&P ‘23
https://ieeexplore.ieee.org/abstract/document/10179324

56

Add me → https://www.linkedin.com/in/hammond-pearce/

https://ieeexplore.ieee.org/abstract/document/9833571
https://www.usenix.org/system/files/sec23fall-prepub-353-sandoval.pdf
https://ieeexplore.ieee.org/abstract/document/10179324
https://www.linkedin.com/in/hammond-pearce/

