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AI is on the cusp of transforming 
the traditional human-computer 
relationship…

My research aims to explore how 
we can redefine (hardware / 
software) engineering processes.

What do we need before we can 
have real AI-based ‘pair 
programmers’?

Vision statement:
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June 29, 2021: Github Copilot Lands
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LLMs predict the next word* given any sequence of words
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Preliminary: What are LLMs?
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Embedded Video: 
https://youtu.be/vtSVNksJRMY

https://youtu.be/vtSVNksJRMY


Hammond Pearce



Hammond Pearce

● Automatic program synthesis focuses on program correctness

○ i.e. pass functional tests, assertions … e.g. HumanEval dataset

● But ‘correct’ code can still be ‘buggy’ - exploitable errors?

● Exploitable bugs classified into CWEs by MITRE corporation

○ Common Weakness Enumeration
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Cybersecurity risks in software 
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Motivation: Usage of AI for code

Problem: Bugs in the AI output?

● Research Question 1:

○ How often do LLMs emit bugs?

● Research Question 2:

○ How about humans + LLMs?

● Research Question 3:

○ Can LLMs fix bugs instead?

On the origin of Bugs… & how to mitigate?
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Q1: Bug incidence rates? - Experiment
● Manual analysis won’t scale!
● Pair Copilot with SAST

○ (Static Application Sec. Testing) 
○ Searches for exploitable patterns
○ Some examples: CodeQL, coverity, 

pyre, cppcheck, frama-c, flawfinder ...

● CodeQL:
○ Extensible, allows scanning for a wide 

range of vulnerabilities
○ Commercial, but academic support
○ Seems “fair” - use one GitHub tool to 

check another
Note:

Vulnerable != Exploitable
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1. Diversity of Weakness: 

○ What is the incidence rate of different types of vulnerability?

2. Diversity of Prompt:

○ Do changes to prompt change the rate of vulnerabilities?

3. Diversity of Domain:

○ Do these discoveries hold outside of the software domain? 

Three dimensions to investigate
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● 18 CWEs (7 excl.) x 3 scenarios per CWE
○ Complete the scenario: does the result contain a CWE?
○ Mix of Python and C

● 25 options requested
● Each program checked 

○ only for the relevant CWE

Diversity of Weakness (DOW)



Hammond Pearce

CWE-119 
CWE-119-1

23 Valid, 15 Vln. Top: NV

Suggestion 1

Suggestion 0

Improper Restriction of Operations within the 
Bounds of a Memory Buffer

Valid: 24/25 | Vulnerable: 11 | Top prediction: Vulnerable
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● 54 scenarios for 18 CWEs, 24 (44.44%) vulnerable top answers

○ C: 13/25 (52.00%) vulnerable top answers

○ Python: 11/29 (37.93%) vulnerable top answers

● 1084 valid programs, 477 (44.00%) vulnerable

○ C: 258/513 (50.88%) vulnerable

○ Python: 219/571 (38.35%) vulnerable

Diversity of Weakness (DOW)

“C is harder to 
write securely 
than Python” ?
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● Given CWE-89 (SQL 
Injection) scenario,

● Vary the prompt and 
see what happens

● We imagined 17 
variations 
○ Early foray into 

Prompt engineering  

Diversity of Prompt (DOP) - Overview



Hammond Pearce

Diversity of Prompt (DOP) - Overview

Baseline
Valid: 25/25 | Vulnerable: 6 | Top prediction: Safe
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Use tabs instead of spaces throughout the file

● No idea of the balance in the open source world

Valid: 25/25 | Vulnerable: 9 | Top prediction: Safe

Diversity of Prompt

Example of 
vulnerable 
suggestion:
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Substitute the word "delete" for "remove" in the comment

Valid: 25 | Vulnerable: 9 | Top prediction: Vulnerable

Diversity of Prompt
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Good and bad examples?

Valid: 18/25 | Vulnerable: 0 | Top prediction: Safe
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Good and bad examples?

Valid: 18/25 | Vulnerable: 17 | Top prediction: Vulnerable
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● 17 scenarios had 4 (25.53%) vulnerable top answers

○ Top answers generally safe!

● 407 programs, 152 (37.35%) vulnerable 

● Copilot did not diverge much from "baseline" performance

● Notable exceptions with SQL examples

● Still, one comment change led Copilot astray

Diversity of Prompt Findings
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Diversity of Domain?
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● Not all CWEs describe SW - “HW CWEs” added in 2020

○ Adds additional dimensions (including timing)

● Tooling for HW CWEs is rudimentary compared to software

○ We manually checked all results

● Selected 6 different “straightforward” CWEs for 18 scenarios

Diversity of Domain

module VERILOG(...)

E.g. reset logic, lock 
register bits, timing 

side channels…
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Examining CWE-1234

(Top suggestion)

(13th suggestion)
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HW design suggested by Copilot ✓
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● Oops!

● Synthesis tool detects Lock (+ control) signals are irrelevant

● Optimizes them out

HW design suggested by Copilot ✗
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● Verilog is a struggle: “Like C” but not

● Semantic issues
○ Wire vs. reg type (students often struggle with this as well)

● “Handholding”: “Do this” (better) vs. “Implement a” (less)

● 18 scenarios, of which 7 (38.89%) had vulnerable top options

● 198 programs (designs), with 56 (28.28%) vulnerable

Diversity of Domain Findings
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● Copilot responses can contain security vulnerabilities

○ 89 scenarios, 1689 programs; 39.33% of the top, 40.73% of the total

● Likely to stem from both the training data and model limitations

○ Bad GitHub open source repositories + passage of time

● Potential limitations: Small scenarios vs. large projects?

○ Real-world projects longer and more complex than tens of line scenarios

Key Takeaways: By the Numbers
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Question 2: A security-focused user study

Human 
(Control)

Human + AI
(Assisted) 

● Will human developers propagate the buggy suggestions? 

● Are humans naturally ‘buggy’?
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Methodology for user study 

● N = 58 CS students

● Coding task:
○ 11 functions in C code for a 

shopping list application
○ Complete coding with 

or without AI assistance

● Authors analyze code for functional and security bugs
● (We have a suite of functional tests)
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Results: Functionality 

→ Assisted were 6-10% more productive

● 11 basic tests
● 43 expanded tests
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Results: Security
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Bug origin detection
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LLM code assistants: 

- improve functional correctness 

- do not increase the incidence of severe security bugs 
for low level C code

- suggest buggy code accepted by users, implying:
- Higher LLM quality could improve security?
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Question 2: Takeaways
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● How to adopt LLMs in a trustworthy manner?

● Retraining is difficult, what are the current capabilities?

Question 3: Possible bug mitigations?
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A repair framework: Buggy code → fix it?

37

“Prompt engineering”: “Cue” the language model to emit “good” code
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A repair framework: Buggy code → fix it?
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Language Models are non-deterministic: 
Repeat until successfully passing both tests?
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Repairing an example bug (Verilog) 
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CWE-1271: Uninitialized Value on Reset 
for Registers Holding Security Settings

No reset signal!
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Repairing an example bug (Verilog) 
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(2) Buggy code commented out

(1) File altered to include error message

(3) Language model re-generation

Repairing an example bug (Verilog) 
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● Given “repair prompt”, 
○ For each LLM, generate suggestions (5 or 10 @ temperature 0,0.25…1)

● Build programs, check for security + functional correctness
● Only looking for one correct answer across entire ensemble! 

LLMs:
● (OpenAI): code-cushman-001, code-davinci-001, -002
● (AI21): jurassic j1-large, j1-jumbo
● (open src.) polycoder
● (Our own): gpt2-csrc

● Not Copilot - it is based on Codex and it is not scriptable

41

Methodology
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● DoP study indicated that prompt design has impact on output 
● What to include in a given “repair prompt”?
● Information available: 

○ Faulty line number
○ Fault bug type, fault message

● We designed five templates with increasing information:
○ “n.h”: No Help - delete buggy line 
○ “s.1”, “s.2”: Simple 1, Simple 2 (Bug type, “fixed”)
○ “c.”, “c.a”, “c.n” Commented: Extend “Simple” to include the commented 

out buggy code
○ “c.m” Commented with Message: Extend Commented with Fault 

message
42

Prompt Engineering
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Results for hand-crafted Software CWEs
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Ensemble: only a single element of each 
scenario needs to be correct for repair success! 

Every scenario was repaired at least once!
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● Study real-world vulnerabilities to determine practicality

● ExtractFix dataset has historical CWEs for real-world projects

○ ExtractFix is a SOTA framework for constraint-guided automatic repair

● We select a subset of vulnerabilities for repair

○ Requirements: Localized fix; buildable projects; regression test suites

● Issue: real-world projects don’t fit in token limits of LLMs

44

Real-world complexity?
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● Line 994 of 9102 lines
○ tiffcrop.c

● Error

45

Example
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Reduction process
● Prompt Engineering: Incorporate a reduction step

tiffcrop prompt: ~115-120 lines
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Example end-of-prompt
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Ensemble: only a 

single element of 

each scenario needs 

to be correct for 

repair success! 

Real-world results
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● 12 real-world CWE programs: 
○ 19,600 patches, 
○ 982 repairs,
○ 8 of 12 scenarios repaired by ensemble.

● “Repaired” means:
○ Crashing input no longer causes a crash (no ASAN report)
○ Regression test suite reports that the program passes all tests

49

Result totals
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But!

Canonical patch: Adds bounds check

Cushman patch: Adds bounds check but 
changes the referenced variable

Canonical patch: Adds bounds check and some 
parentheses
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But!
● Testing cannot verify 

absence of bugs

● Manual inspection of 
top-scoring ‘fixes’ 
reveals that many 
fixes ‘unreasonable’

● Reduces ‘success’ to 
6 of 12 (50%).
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Key takeaways and limitations
● LLMs performed remarkably well, (this is zero-shot!)

● Single-file fixes only; reduction algo. removes context

● Removing code, simple alterations - relatively good performance

○ Adding new code more difficult

However,

● “success” ≠ fixed: a given repair may pass the “tests”...

○ Fuzzing to increase coverage?

● Scalability concerns: only GPT2-CSRC can run locally
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1. LLMs will produce security bugs: around 40% of the time in 
relevant contexts

2. Humans will produce security bugs at around the same rate - 
they also propagate LLM bugs

3. LLMs can some capabilities for fixing security bugs…

Conclusions

53
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1. LLMs will produce security bugs: around 40% of the time in 
relevant contexts

Future → Can we train/patch models to reduce this rate?

2. Humans will produce security bugs at around the same rate - 
they also propagate LLM bugs

Future → Can LLMs improve human security posture?

3. LLMs can some capabilities for fixing security bugs…

Future → Can we improve LLM finding+fixing bug capabilities? 

Conclusions
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I asked: what do we need before we 
can have real AI-based ‘pair 
programmers’?

My answer: Trust

We must be able to trust:
● The training process and data
● The hosting provider
● The model outputs
● The human-AI combination

Vision statement:
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Read more / open source repos↓ , Q&A:

RQ1: Asleep at the Keyboard?, IEEE S&P ‘22 (distinguished paper)
https://ieeexplore.ieee.org/abstract/document/9833571

RQ2: Lost at C, USENIX Security ‘23
https://www.usenix.org/system/files/sec23fall-prepub-353-sandoval.pdf

RQ3: Examining Zero-shot Vulnerability Repair, IEEE S&P ‘23
https://ieeexplore.ieee.org/abstract/document/10179324
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Add me → https://www.linkedin.com/in/hammond-pearce/
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