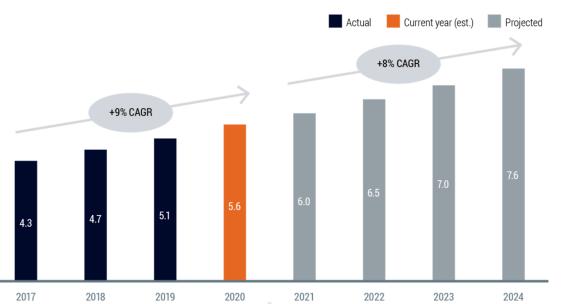
ML Enabled Cyber Deception

Kristen Moore

Senior Research Scientist Distributed Systems Security

DecaaS: Deception as a Service



Why Cyber Deception?

Australia spent AU\$5.6 billion on cyber security in 2020 Yet breaches continue...

Australia's cyber security spend, 2017-24

A\$, billions

Source: Australia's Cyber Security Sector Competitiveness Plan 2020, Australian Cyber Security Growth Network

Why Cyber Deception?

The average time to identify and contain a data breach is 277 days. The average cost of a data breach is US \$4.35M

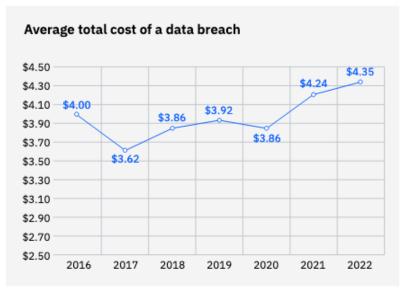


Figure 1: Measured in USD millions

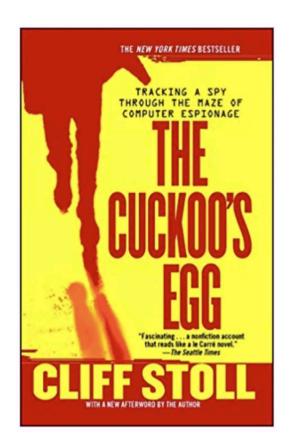
Source: IBM/Ponemon Cost of a Data Breach Report 2022.

Deception for Security

Deception complements existing security technologies Lets the defender regain the advantage

Honeypots

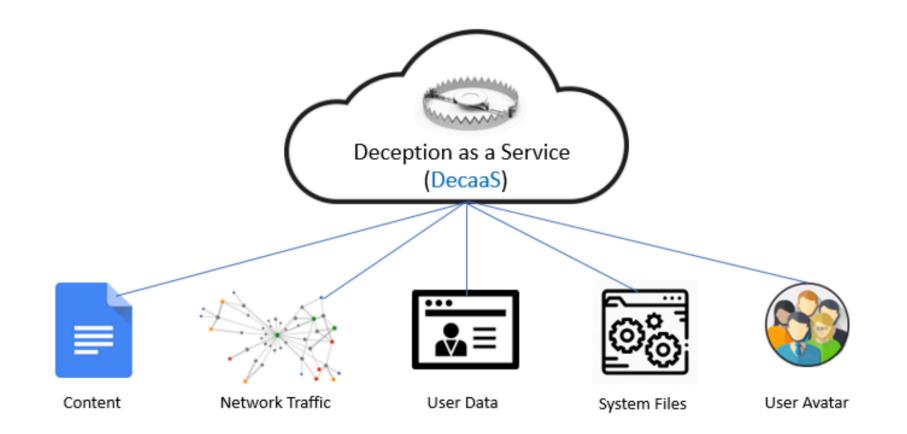
Cyber Deception typically means honeypots


- Put fake artefacts/traffic on the network
- Legitimate users have no reason to interact with
- Any interaction is suspicious \rightarrow Breach discovery

Other Advantages

- Discover adversary intent
- Tactics, Tools and Procedures
- Delay and frustrate

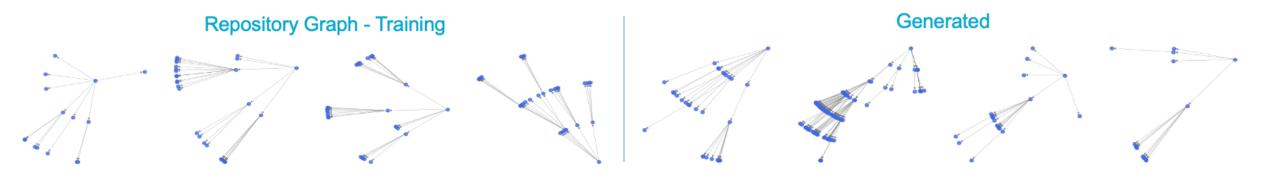
A Cyber Deception success story: The Cuckoo's Egg by Cliff Stoll



Technical Challenges

- Realism drives deep interaction
- Automation needed for scale
 - \rightarrow a Machine Learning problem...

DecaaS projects

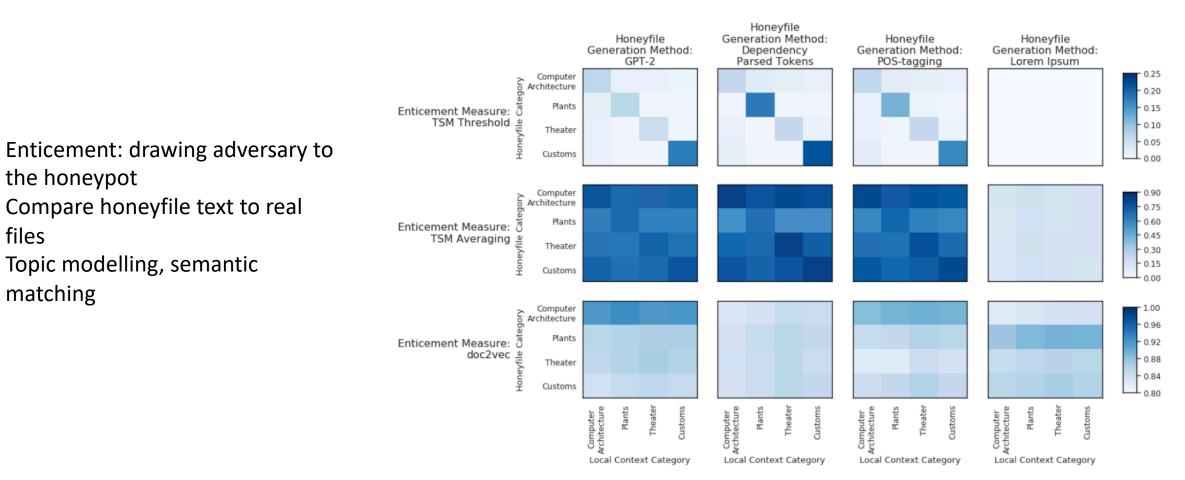


Key Machine Learning tools

- Language models (GPT, BERT, ...)
- Graphs
- Temporal Point Processes (TPPs)

1. HoneyCode: Fake Repositories

- Fake file trees, file names and code
- Trees generated using modified Graph Recurrent Attention Network (GRAN)
- Filenames and code from character RNN

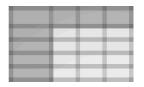


See: D. Nguyen, D. Liebowitz, S. Nepal, and S. Kanhere, *Honeycode: Automating deceptive software repositories with deep generative models*, in Proceedings of the 54th Hawaii International Conference on System Sciences, 2021

2. Deception Metrics

٠

٠


See: R. Timmer, D. Liebowitz, S. Nepal, and S. Kanhere, TSM: Measuring the Enticement of Honeyfiles with Natural Language Processing, accepted to: Proceedings of the 55th Hawaii International Conference on System Sciences, 2022

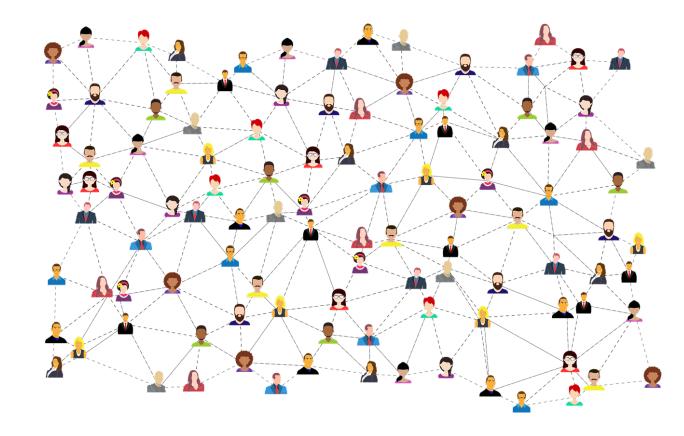
And more...

CSV content generation

Wiki generation

Image and Logo Generation

• WiFi traffic generation

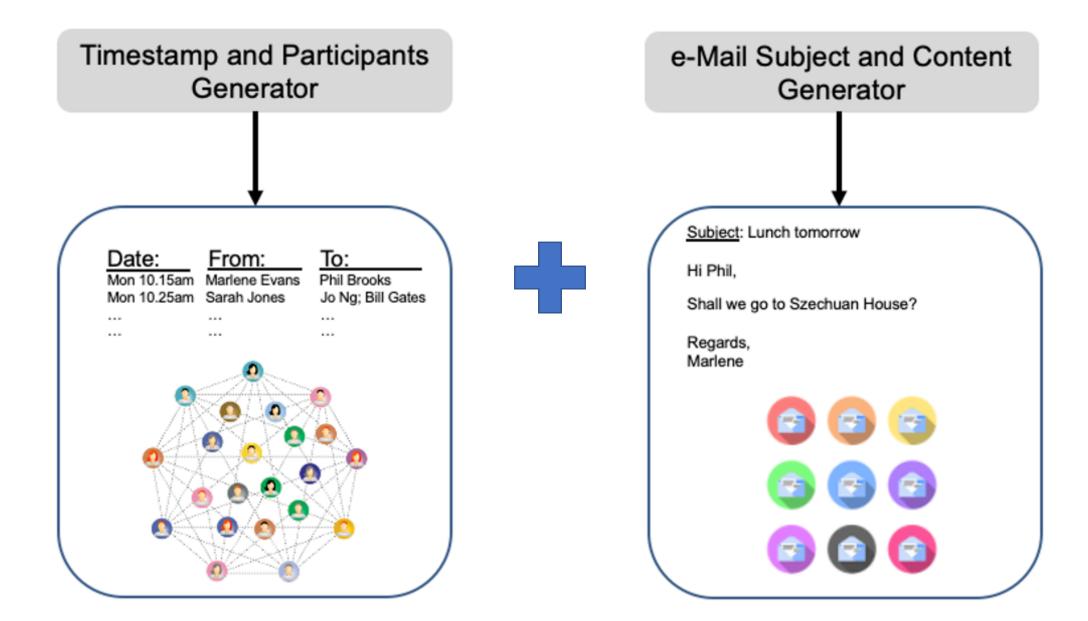


Simulating Networked Communications

Goal: Simulate communications on e-mail, Teams, Slack, Whatsapp, ...

Approach: Combine:

- Temporal event models (including network topology)
- Language models



See: K. Moore, C. Christopher, D. Liebowitz, S. Nepal, and R. Selvey.
 Modelling direct messaging networks with multiple recipients for cyber deception.
 IEEE European Symposium on Security and Privacy 2022.

E-mail server simulation

e-Mail Generation

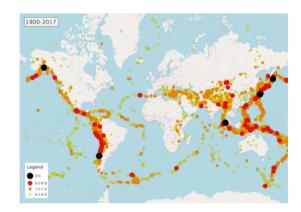
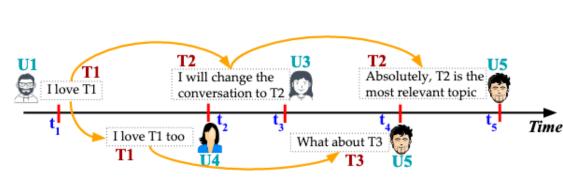
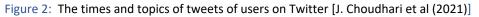
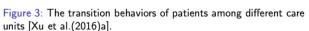
1. Simulating timestamps and participants

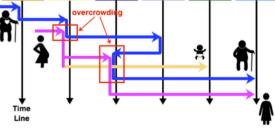
Date:	From:	To:
Mon 10.15am Mon 10.25am	Marlene Evans Sarah Jones	Phil Brooks Jo Ng; Bill Gates
•••		

Part 1: Temporal event modeling

Real world event sequences

- Earthquakes
- User behaviours in social networks
- Patient Flows in Hospitals


Figure 1: The locations and the intensities of the earthquakes from 1900

to 2017 [Ogata(1988)]

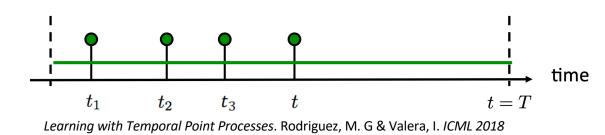
ICU

Medical Cardiac surgery Neonatal

recovery ICU

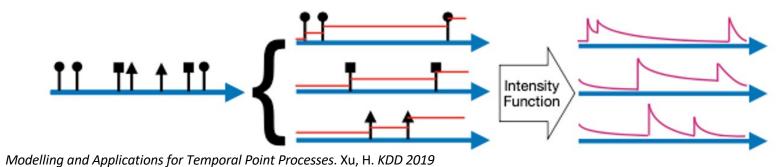
Genera

Ward


ICU

Coronary

Anesthesia


Temporal Point Processes

• Poisson process:

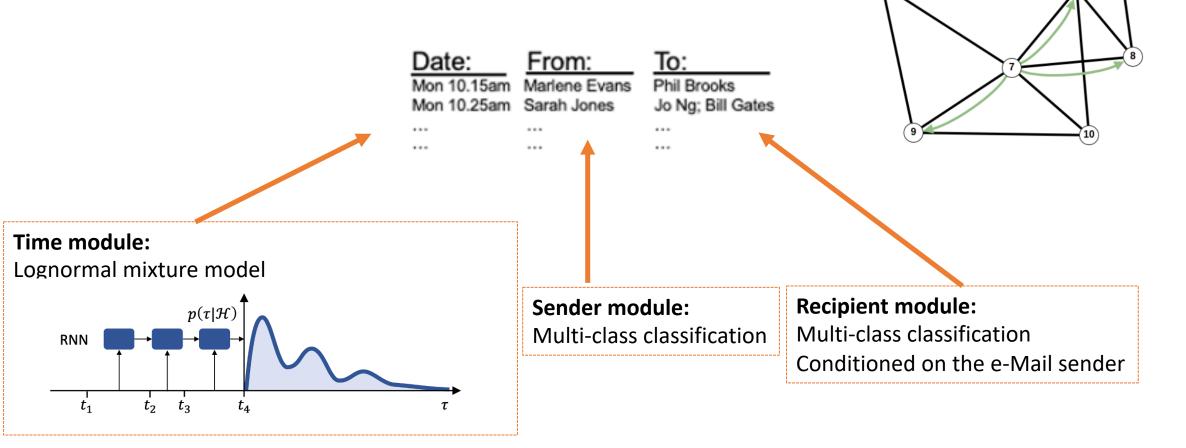
Constant rate intensity function

• Marked self-exciting TPPs:

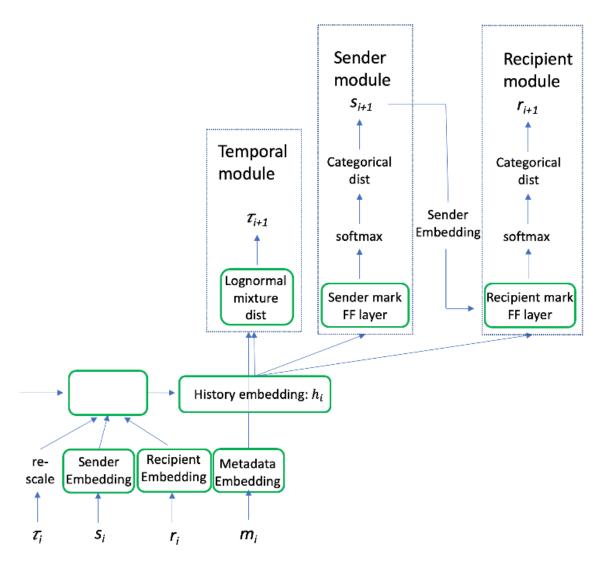
• Contemporary approaches: neural networks (eg. RNNs or Transformers)

Desirable properties of TPP models

- **1.** Flexibility: ability to approximate any probability density on \mathbb{R} arbitrarily well. Eg. Multi-modal ones.
- Closed form likelihood: if not closed form → have to approximate via Monte Carlo or numerical quadrature (slower and less accurate).
- **3. Closed form sampling:** ie. draw samples analytically via inversion sampling. Alternative → Thinning Algorithm (slower and less accurate).


TPPs for network communication modeling

- Multi-task ML problem with 3 tasks:
 - event time prediction
 - sender prediction
 - recipient prediction
- Event history: embedded via RNN and shared across all 3 tasks


Date: Mon 10.15am Mon 10.25am	 To: Phil Brooks Jo Ng; Bill Gates
•••	
•••	

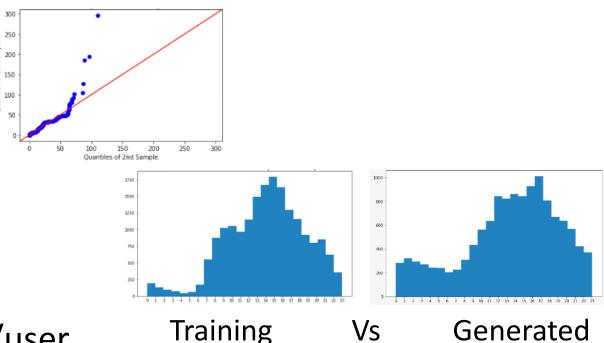
TPPs for network communication modeling

- Multi-task ML problem with 3 tasks:
 - event time prediction
 - sender prediction
 - recipient prediction
- Event history: embedded via RNN and shared across all 3 tasks

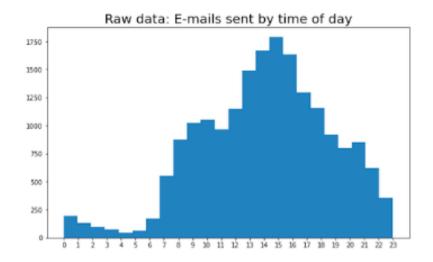
LogNormMix-Net architecture

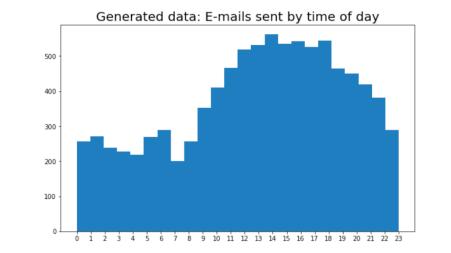
•••

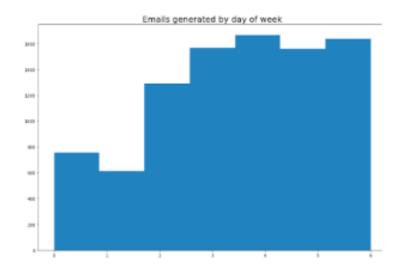
Evaluating the realism of generated content

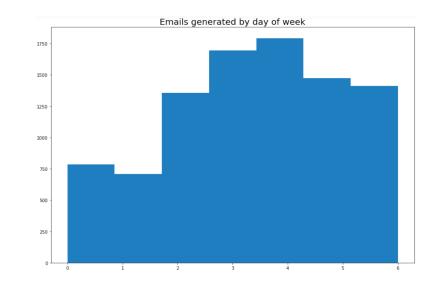

Cyber deception \rightarrow simulated content should stand up to moderate scrutiny

Temporal realism:

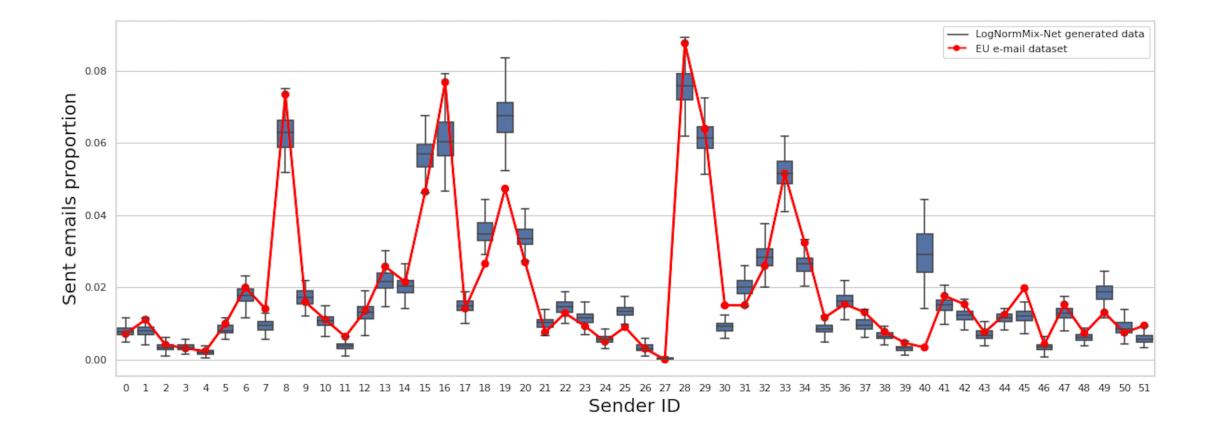

- inter-arrival time distributions
- hour of day
- day of week


Realism for participants:


- Proportion of sent e-mails per node/user
- Proportion of received e-mails per recipient group



Seasonality preservation



Sender outdegree

2. Generating multi-party e-mail threads

Leveraging pre-trained generative language models

Model Name	Number of Parameters
GPT-2	1.5B
GPT-3 Ada	2.7B
<u>GPT-Neo</u>	<u>2.7B</u>
GPT-3 Babbage	6.7B
GPT-3 Curie	13B
GPT-3 Davinci	175B

Table 1: Size of various GPT-based models. Source: <u>Venturebeat:gpt-3s-free-alternative-gpt-neo</u>

Goal: Simulate office network

- each individual has consistent, appropriate topics
- threads coherent and stay on topic

e-mail content generation

1. <u>e-mail subject line generation model</u>

- * fine-tune GPT-2 on the email subject lines from Enron corpus.
- * extract set of topic/keywords for each user (from their email subjects)
- * prompt the subject generation model with a sampled topic/keyword

Subject Personalization

Top 10 Keywords for user IDs 4, 5, and 10:

ID 4: ['Update', 'Meeting', 'Bullets', 'Weekly', 'Capacity', 'Pipeline', 'Storage', 'Project', 'Revised', 'List']
ID 5: ['Citizens', 'Agreement', 'Sale', 'Purchase', 'Deal', 'Contract', 'Option', 'City', 'Supply', 'Price']
ID 15: ['Meeting', 'Conference', 'Risk', 'Resume', 'Visit', 'Energy', 'Research', 'Power', 'Model', 'Summer']

ID 4

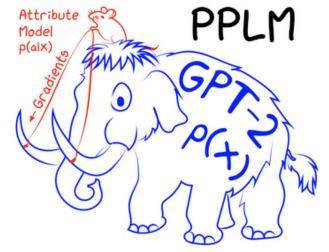
Pipeline News: August 26, 2001.	ID 15	ID 5
Pipeline Summary for October 11, 2001.	Risk Management Simulation-Please review.	Sale of Napoleonville land.
Meeting to discuss Team Selection -Reply.	Summer and Fall Schedule, November.	Price and Interest Rates, as seen on the
Update on California Electricity Market.	Summer Intern Information.	MarketWatch.
Bullets 09/02/01.	Summer Associate Candidate - Angela Davis.	City of Mesa Update.
Capacity Matrix Update.	Summer Clerkship Program Winners.	Contract or Training.
Capacity Report.	Resume for Jeff Skilling.	Sale of the Hines Hines/Nerdwood.
Weekly Update from the Office of the	Resume : Your Input Required.	Agreement with PG&E.
Chairman.	Resume Submitted.	Deal Request - M5B17.1.
Weekly Updates: Energy, Environment, and	Power Point Presentation on Credit Risk.	Contract for: the Office of the Chairman,
Weather.	Energy Analysis - New Issue.	and for the oom.
Weekly Update on Power Markets & Energy	Risk Systems Update for December 11th.	Agreement with Drexel Energy.
Market.	Visit to Portland - July 18.	Contract Payment Status Report.
Weekly Update - RTO Week Summary of	Visit to Weather Desk.	Deal Correction Notice - Week of Oct 25.
Comments.	Model Review Meeting - June 9, 2001.	Agreement with EPMI-ECI.
List of Accomplishments.	Meeting in Portland - July 25.	

e-mail content generation

1. <u>e-mail subject line generation model</u>

- * fine-tune GPT-2 on the email subject lines from Enron corpus.
- * extract set of topic/keywords for each user (from their email subjects)
- * prompt the subject generation model with a sampled topic/keyword
- 2. <u>e-mail body generation model</u>

* fine-tune on the email bodies from Enron corpus.


* seed/prompt the generation with the email subject and existing email thread (if any)

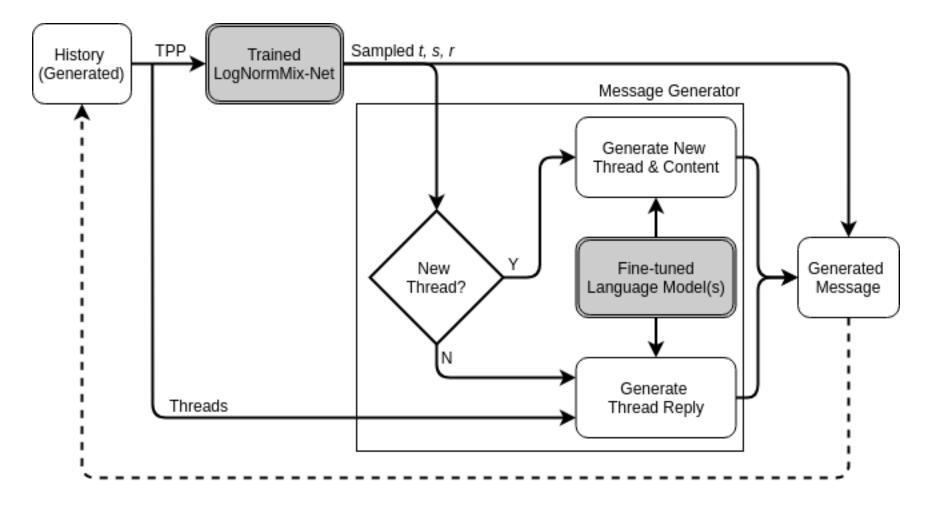
Subject:	Subject: Accountability Notice.		
	From: Stephen Keller To: Amanda Lee; Mark Ford; Lauren Gould		
thread	Hello all,		
	Your Approval for this User is Important If you do not approve this User, you will receive		
	a message from the user and will not be able to review your User ID and/or Account		
	status. Please check the User ID and/or Account status in their profile to make sure their		
	Approval is complete.		
	Best, Stephen.		
	From: Mark Ford To: Stephen Keller CC: Amanda Lee; Lauren Gould		
e-mail	Hello Stephen,		
	It seems that your Approval is critical to have your team send you information on User ID		
	and/or Account status so we can review and approve your User ID and/or Account status		
.	for you. We will need to know: how many days this User has been online, what		
	percentage of his/her profile has been filled. In the event this User has been online for		
	more than one day, will he or she be eligible to receive all User ID and/or Account status?		
	Regards, Mark.		
	From: Mark Ford To: William Ware CC: Stephen Keller; Amanda Lee; Lauren Gould		
	Hi William, Can you help out here?		
	in windin, can you help out here:		

Increasing the enticement of e-mails

Plug and Play Language Model (PPLM) [Dathathri et al. 2019]

• PPLM gives better control over the topic of the generated e-mails

- How can PPLM increase enticement?
 - cyber deception scenario: intruder searches file system for documents containing keywords of interest
 - add enticing keywords to the PPLM model's bag of words \rightarrow encourages the model to use them during generation


Prompt: Meeting today at 10:30 am PDT. Hi Linda,		
Subject: Meeting today at 10:30 am PDT.		
From: San	<u>dra Lynch</u>	
To: Linda P	Perez	
Step size = 0.3	Hi Linda, We are <u>meeting</u> at the 10th-16th of <u>November</u> in San Francisco, CA to <u>discuss</u> the development on the	
	East Coast of ENE. As such, the first <u>meeting</u> will be with <u>Linda</u> Adrienne Young and myself to <u>discuss</u> all the features of our <u>plan</u> , what we expect to see, the challenges, and what we can be grateful for in the	
	next 2 <u>week</u> s. <u>Linda</u> and his <u>team</u> will be <u>meeting</u> with the ENE developers and we will then move on to the 3-4 <u>Meetings</u> after our last <u>meeting</u> . I have <u>attached</u> a <u>list</u> of what we expect to see, and some of the features and opportunities in the 3-4 <u>Meeting</u> .	
	Sandra.	
Step size = 0.5	Hi Linda, You have a <u>number</u> of outstanding <u>project</u> s that we are <u>working</u> on. I would encourage all of you to <u>contact</u> us <u>today</u> to take a <u>look</u> at this <u>project</u> if you have <u>questions</u> . <u>Meeting Attend</u> ees [IMAGE] [IMAG= E] [IMAGE] [IMAGE] [IMAGE][IMAGE] [IMAGE] [IMAGE] [IMAGE] [IMAGE] <u>Good Meeting</u> <u>Meeting</u>	
	Regards, Sandra.	

Evaluating the realism of generated content

Inspired by Karuna et al. 2018: Enhancing cohesion and coherence of fake text to improve believability for deceiving cyber attackers

- **Coherence:** similarity score between 2 consecutive emails within a thread (Google Universal Sentence Encoder + cosine-similarity)
- Cohesion: number of overlapping lemma types that occur in an email and its reply

Full Architecture

Challenges & Future Directions

- Privacy preserving generation of deceptive content
- Evaluating the realism and enticement of ML generated decoys
- Understanding/influencing the cyber adversary
- Quantifying the effectiveness of cyber deception
- Protecting our autonomous systems from being deceived

Thank You