

CENTER FOR CYBER SECURITY

Cyber Security and Privacy Lab

جامعـة نيويورك أبوظـي NYU ABU DHABI

Academic

Securing Cellular Networks: Challenges from 5G to Next-Generation Systems

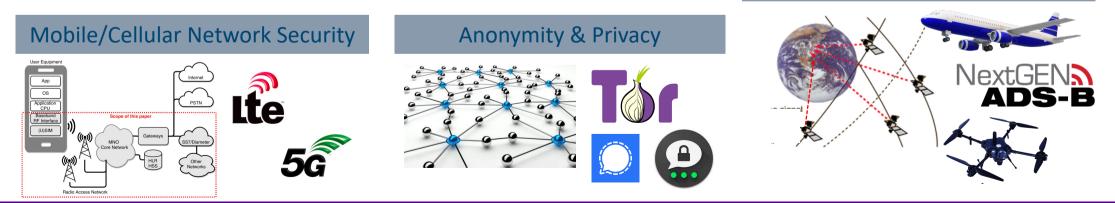
Christina Pöpper, New York University Abu Dhabi

Dec 11, 2024

Christina Pöpper (NYUAD) : Securing Cellular Networks: Challenges from 5G to Next-Generation Systems

About

About


جامعـة نيويورك أبوظـي NYU ABU DHABI

- Associate Professor of Computer Science at NYUAD, Ph.D. from ETH Zurich
 - Program Head of Computer Science at NYUAD since 2023
 - Director of Research at Center of Cybersecurity at NYUAD since 2019
 - Leading the Cyber Security & Privacy (CSP) Lab since 2016
- 18 years of research experience in cyber security and wireless security
 - ~10 years of in mobile/cellular security

Secure Localization & Aviation

Christina Pöpper (NYUAD) : Securing Cellular Networks: Challenges from 5G to Next-Generation Systems

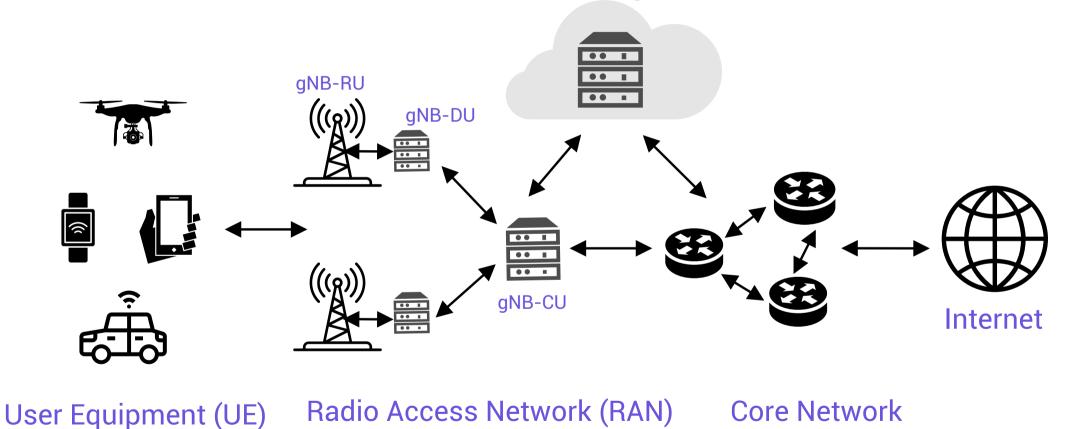

6

Critical role of Security in Cellular Networks

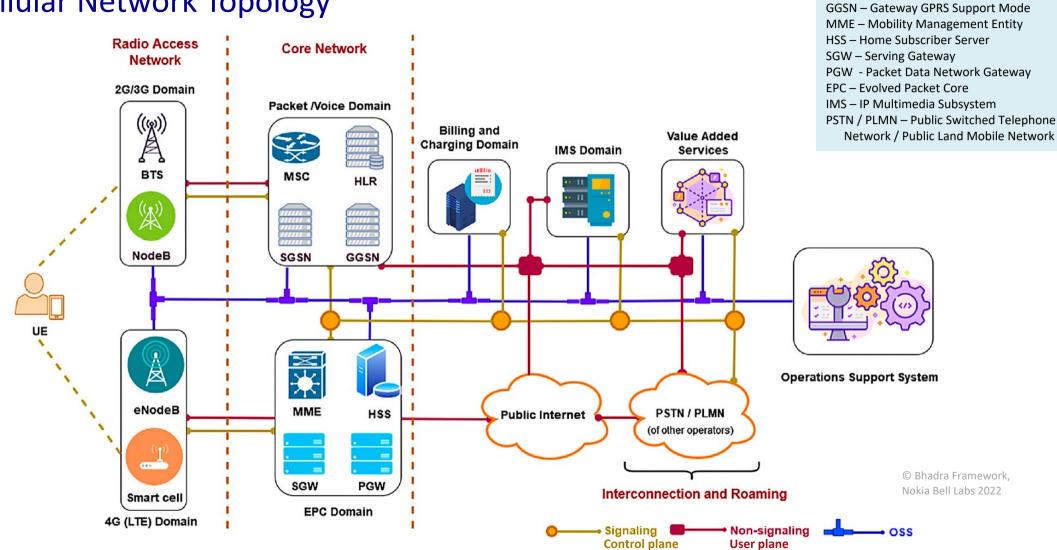
5G

5G

Vulnerabilities – Attacks – Defenses



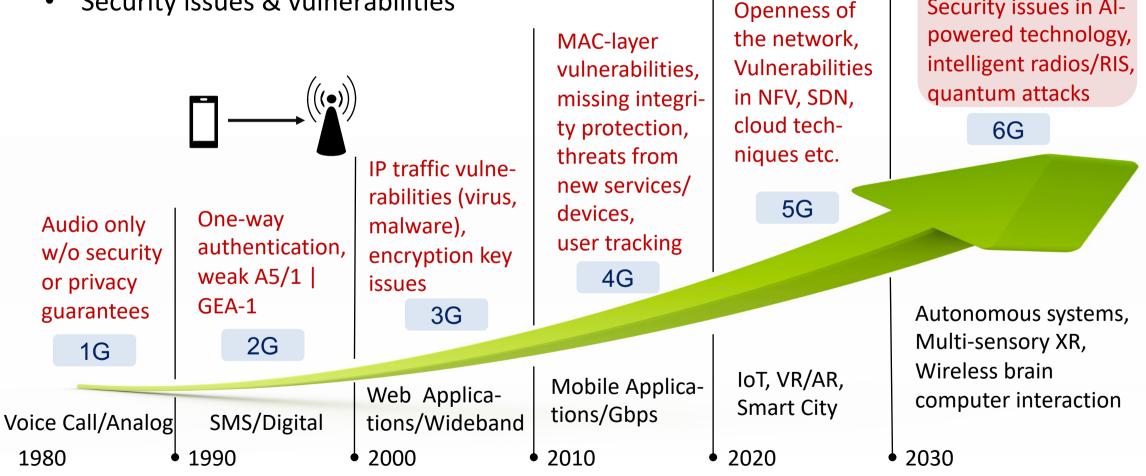
Mobile/Cellular Network Security


Cellular Network Security

Cellular Networks

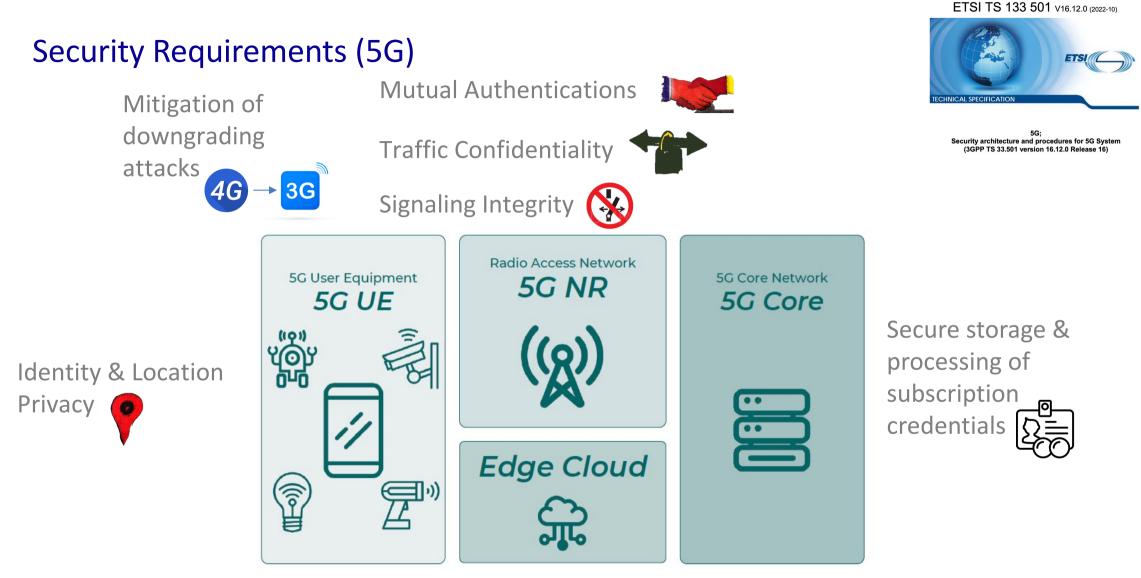
Mobile Edge Cloud

Christina Pöpper (NYUAD) : Securing Cellular Networks: Challenges from 5G to Next-Generation Systems

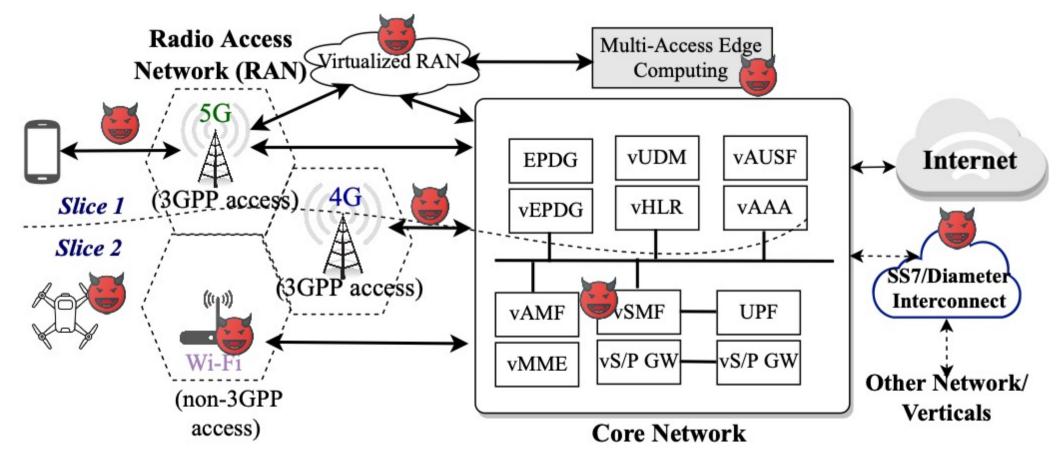

Cellular Network Topology

Christina Pöpper (NYUAD) : Securing Cellular Networks: Challenges from 5G to Next-Generation Systems

MSC – Mobile Switching Center HLR – Home Location Register SGSN – Serving GPRS Support Mode


Security in Cellular Networks – A Quick Pass through the Generations

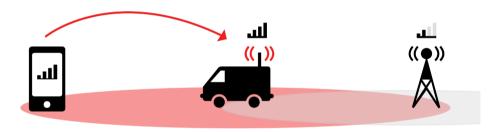
Security issues & vulnerabilities


Christina Pöpper (NYUAD) : Securing Cellular Networks: Challenges from 5G to Next-Generation Systems

Security issues in Al-

Source: wenovator

Threat Landscape on Cellular Networks



[©] Syed Rafiul Hussein

Attacks on Cellular Networks

Radio-layer Attacks on Cellular Networks

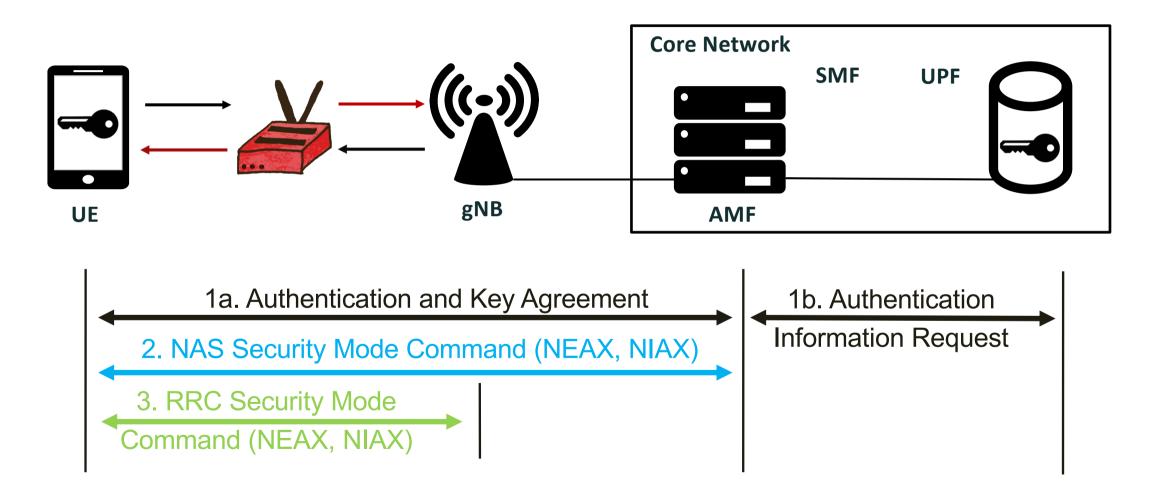
- Jamming | DoS | Downgrading
- IMSI catchers | Stingrays | False Base Stations
 | Cell Site Simulators

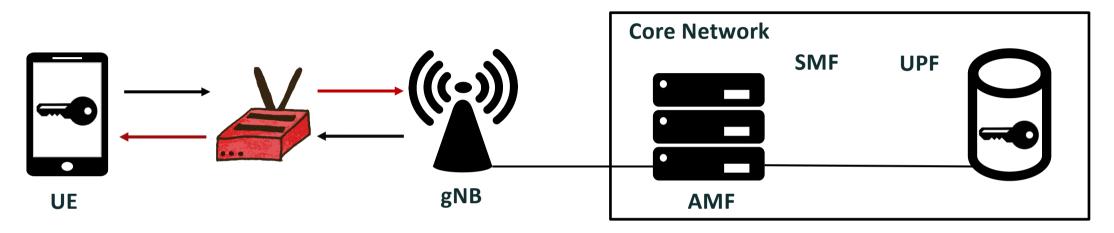
Higher-layer Attacks on Cellular Networks

- Phishing, Smishing, Spamming
- RoboCalls, Silent SMS
- Malware (Simjacker, WibAttack), Viruses (Flubot)
- Potential of AI/ML attacks

Categories of attacks:

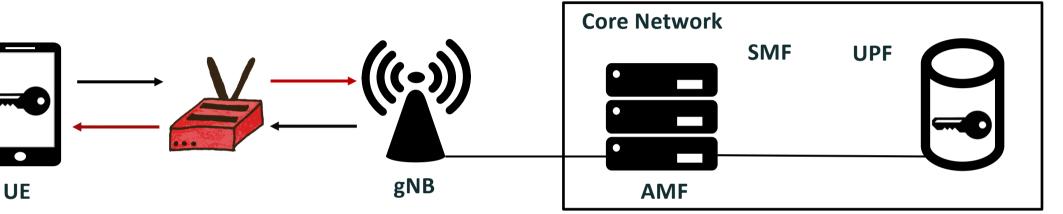
- Denial of service & Service downgrading
- Presence testing & Location tracking

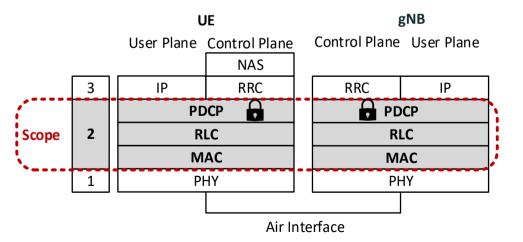



• Communication interception (2G/3G)

Categories of attacks:

- Targeting mobile users
- Targeting mobile apps
- Targeting mobile devices
- Targeting network/core/ operator


1) Repeater/Forwarder


(on the PHY-layer) → boosting signal strength

- Leaking plaintext identities, payload (2G-3G)
- Fingerprinting of user activities (browsing, videos)

Rupprecht, Kohls, Holz, Pöpper: **Breaking LTE on Layer Two** IEEE S&P, 2019 (**aLTEr**)

Rupprecht, Kohls, Holz, Pöpper: IMP4GT: IMPersonation Attacks in 4G NeTworks, NDSS, 2020

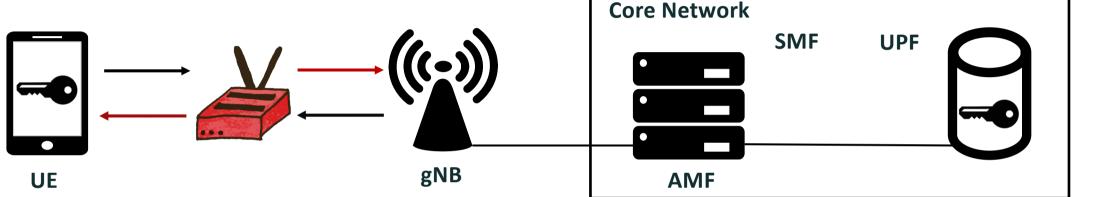
1) Repeater/Forwarder

(on the PHY-layer)

- \rightarrow boosting signal strength
- 2) Relay (on the MAC-layer)
 → signals to bits,
 (de)modulation, connections,
 forwarding on PDCP/RRC layers
- Tampering with packets, recover data
- Impersonate users (in 4G or if user-plane traffic is not integrityprotected)

Rupprecht, Kohls, Holz, Pöpper: **Breaking LTE on Layer Two** IEEE S&P, 2019 (**aLTEr**)

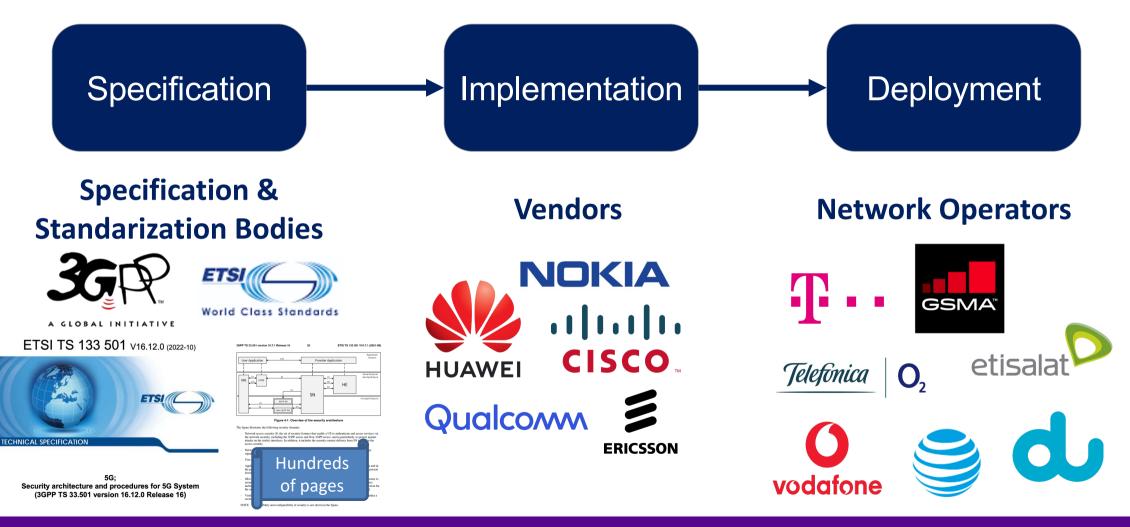
Rupprecht, Kohls, Holz, Pöpper: IMP4GT: IMPersonation Attacks in 4G NeTworks, NDSS, 2020



 decode, overshadow & inject arbitrary messages over the air in up- and downlink direction between network and UE 1) Repeater/Forwarder

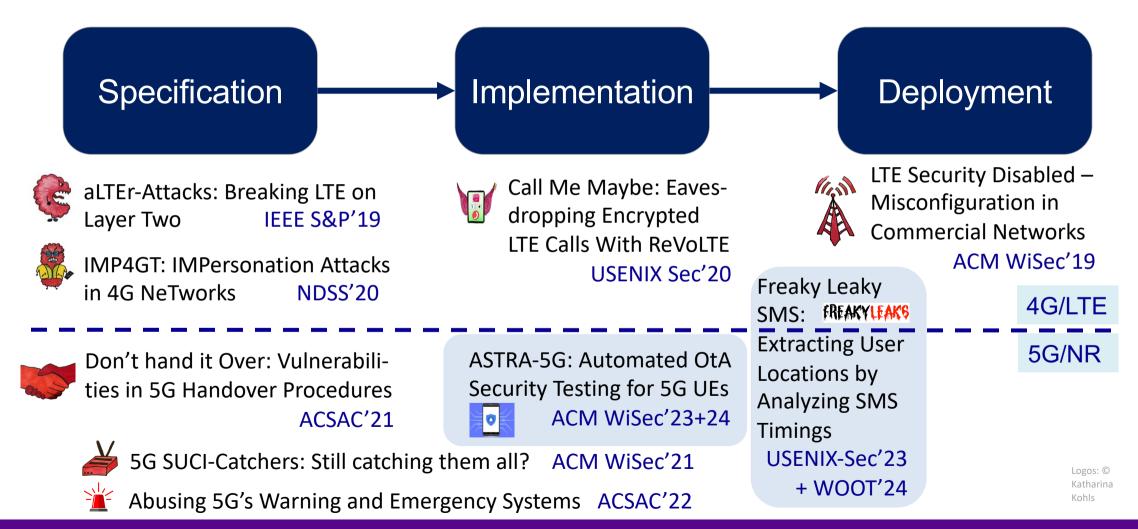
(on the PHY-layer)

- \rightarrow boosting signal strength
- 2) Relay (on the MAC-layer)
 → signals to bits,
 (de)modulation, connections,
 forwarding on PDCP/RRC layers
- Tampering with packets, recover data
- Impersonate users (in 4G or if user-plane traffic is not integrityprotected)



Exemplary Security Enhancements from 4G to 5G

lssue	4G	5G Enhancement	Mitigated Threat
Confidentiality & Integrity Protect.	<i>Control Layer</i> : Encryption & Integrity Protection <i>User Plane</i> : Encryption	+ Mandatory support for User Plane Integrity Protection	If used: Prevention of tampering with user data (aLTEr/IMP4GT- like attacks)
Subscriber Privacy	SUPI sent in plaintext No guidelines for updating temp. identities (GUTI)	SUPI → SUCI concealment Well defined timing of 5G-GUTI redistribution	Large-scale IMSI- catchers, location exposure, user tracking
NAS Security	Initial NAS messages are sent in plaintext	Confidentiality protection of initial NAS messages	Network spoofing, message hijacking, DoS attacks

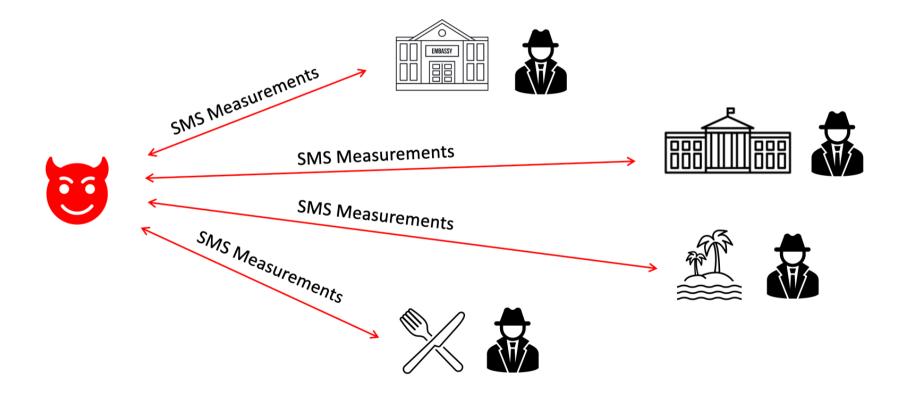

https://www.gsma.com/security/securing-the-5g-era/

Cellular Network Entities and Development Phases

Christina Pöpper (NYUAD) : Securing Cellular Networks: Challenges from 5G to Next-Generation Systems

Our Research Contributions

Christina Pöpper (NYUAD) : Securing Cellular Networks: Challenges from 5G to Next-Generation Systems



Freaky Leaky SMS – An Attack on Location Privacy

Collaboration with Evangelos Bitsikas, Theodor Schnitzler, & Aanjhan Ranganathan

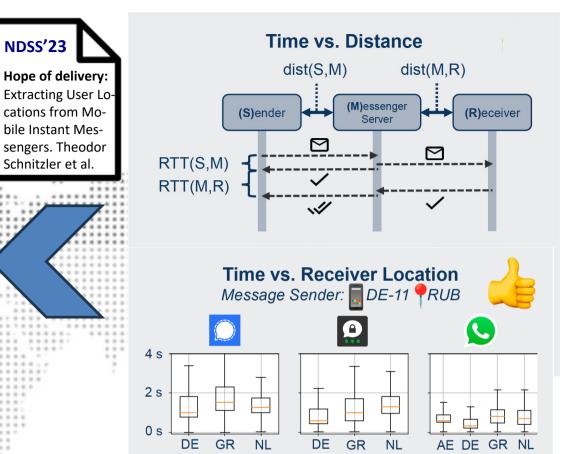
Let's Consider the Following Scenario

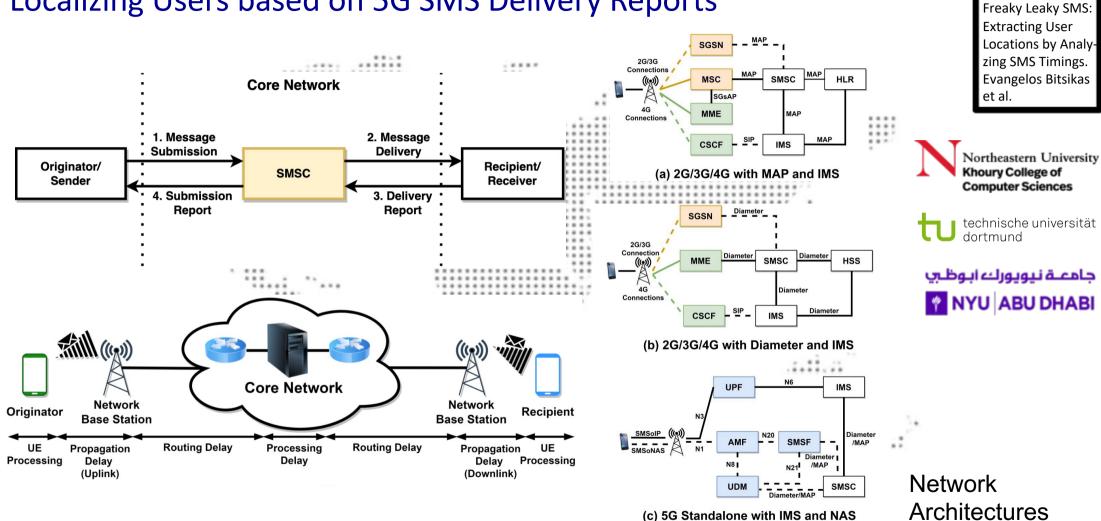
Tracking the diplomat to routinely locations

Let's Consider the Following Scenario

- 1. Know routine locations and mobile number of the victim.
- 2. Send silent SMSs and receive acknowledgements and delivery reports.
- 3. Use the SMS timings to generate fingerprints per location.
- 4. Use the fingerprints to predict the location of the victim using ML.

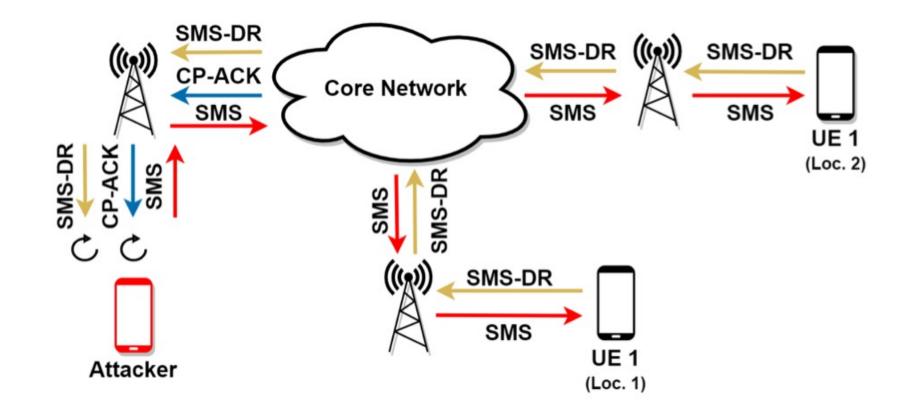
Localizing Users based on 5G SMS **Delivery Reports**

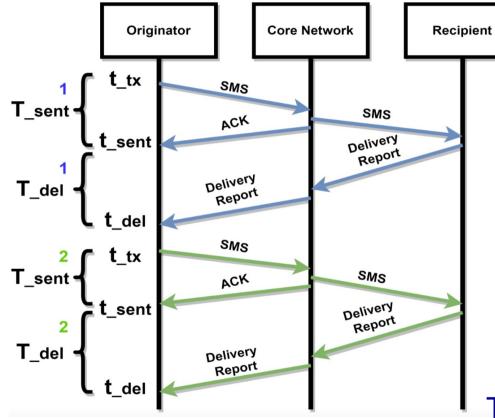

Our Contributions:


- 1. Unique and stealthy location identification attack based on the SMS infrastructure
- 2. Large-scale evaluation: 3 continents, 9 countries, 10 operators, 16 devices
- 3. The attack can achieve up to 96% accuracy for international classifications, and over 70% more for many national/regional classifications.

NDSS'23

Schnitzler et al.


4. Countermeasures against the SMS location inference attack



Localizing Users based on 5G SMS Delivery Reports

Usenix Sec'23 Localizing Users based on 5G SMS Delivery Reports

Localizing Users based on 5G SMS Delivery Reports – Location Fingerprints

$$T_{sent} = t_{sent} - t_{tx}$$

$$T_{del} = t_{del} - t_{sent}$$

$$T_{tot} = T_{del} + T_{sent}$$

$$P = \frac{T_{del}}{T_{tot}} = \frac{t_{del} - t_{sent}}{t_{del} - t_{tx}}$$

$$T_{\Delta sent} = (T_{sent}^{i} - T_{sent}^{i-1})/T_{sent}^{i-1}$$

$$T_{\Delta del} = (T_{del}^{i} - T_{del}^{i-1})/T_{del}^{i-1}$$

$$(1)$$

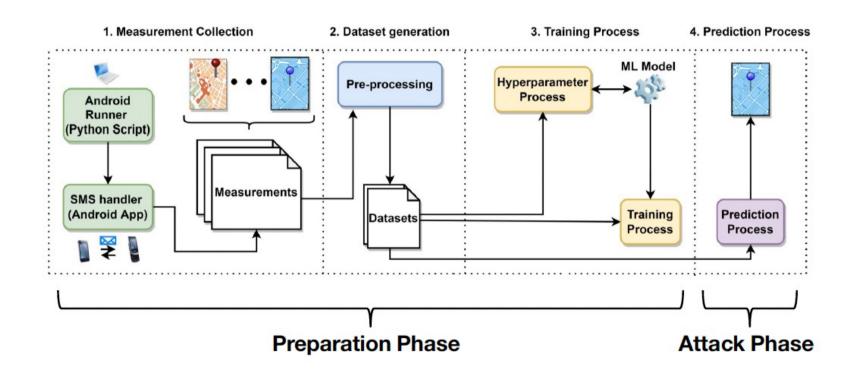
$$(2)$$

$$(3)$$

$$(4)$$

$$(5)$$

$$(5)$$

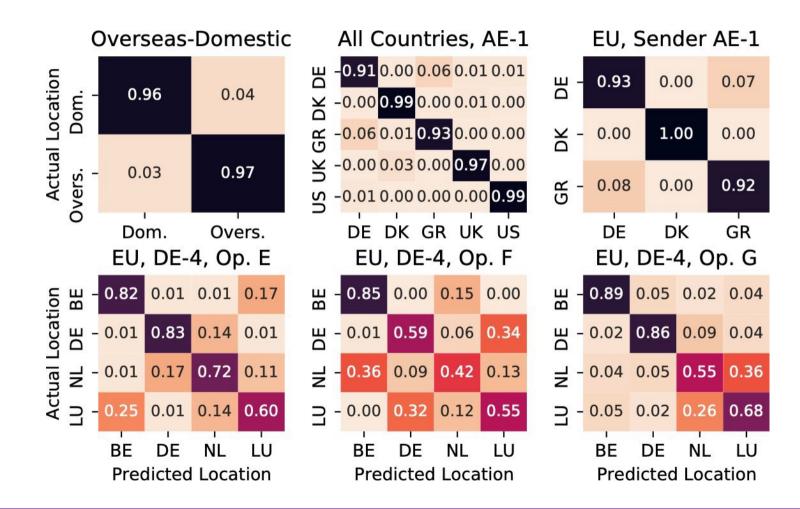

$$(5)$$

$$(6)$$

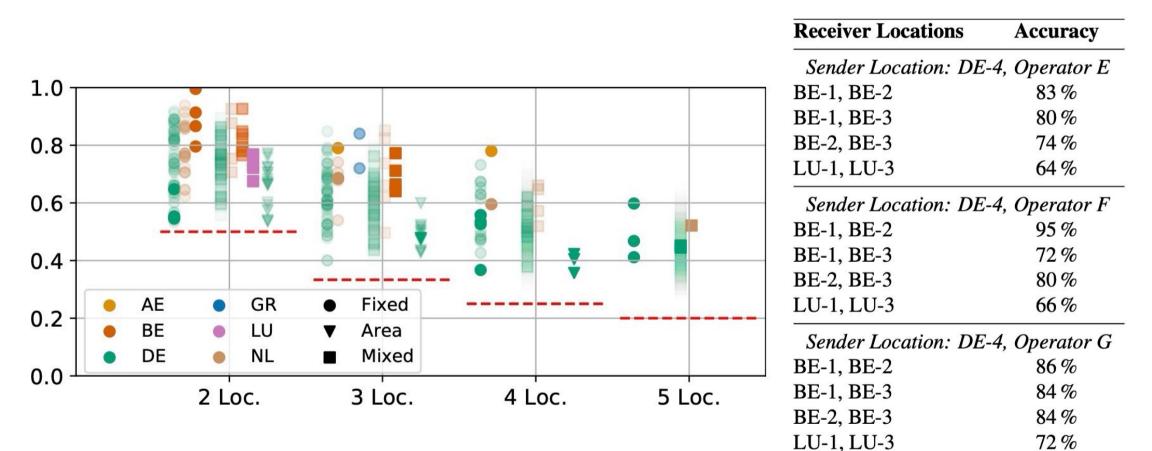
$$(6)$$

The *location fingerprint* is a combination of 6 features: (*T*sent, *T*del, *T*tot, *P*, *T* Δ sent, *T* Δ del)

Localizing Users based on 5G SMS Delivery Reports – Measurement Setup


- SMS burst: 20 silent SMSs per hour (continuously).
- Various times of the day, network configurations, and levels of network loads.
- Locations in GR, DE, DK, UK, US, AE, NL, BE, LU.
- Connection Types: LTE, LTE+, 5G NSA/SA
- Routing Modes: SMSoIP, SGsAP/Diameter
- Approximately 155,512 SMSs in total.

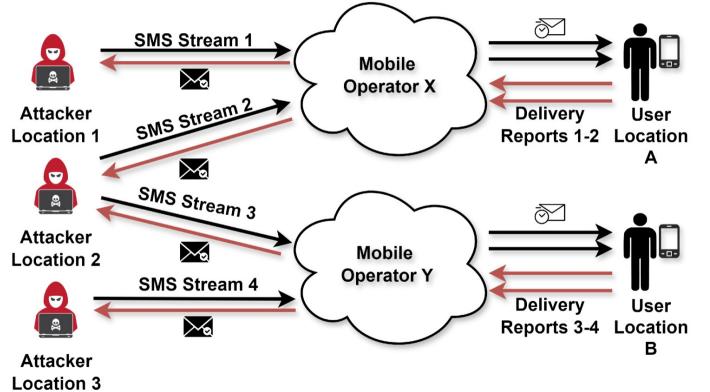
Localizing Users based on 5G SMS Delivery Reports – ML Parameter Tuning


Multi Layer Perceptron (MLP) Neural Network

- Manual & Automatic Hyperparameter tuning
- Stochastic gradient descent solver
- SoftMax and Sigmoid activations
- Three layers of 10, 40, 10
- Maximum iterations: 5000
- Constant learning rate
- Batch size: 32
- Alpha: 0.0001

Results: International Classification

Results: Regional Classification



Pros and Cons

- Low attacker resources (e.g., no need for false base stations)
- Stealthy (silent SMS), no need for infrastructure access (e.g., network insider)
- Existing SMS infrastructure available across generations of cellular networks
- GSMA Mobile Security Research Acknowledgement: CVD-2023-072
 https://www.gsma.com/security/gsma-mobile-security-research-acknowledgements
- Less accurate than other sophisticated location inference attacks (such as: especially for multiple classes
- Hard to adapt top an open-world setting
- Provider might block that single sender

Leveraging Multiple Senders to Improve the Limitations

- Synchronous transmissions of silent SMSs
- Recording of timing characteristics with timestamps
- Combination and statistical fusion of sender data
- ML training and prediction
- Reduces the sample sizes -> Less SMS transmissions

Leveraging Multiple Senders to Improve the Limitations Initial Features:

$$T_{sent} = t_{sent} - t_{tx}$$

$$T_{del} = t_{del} - t_{sent}$$

$$T_{tot} = T_{del} + T_{sent}$$

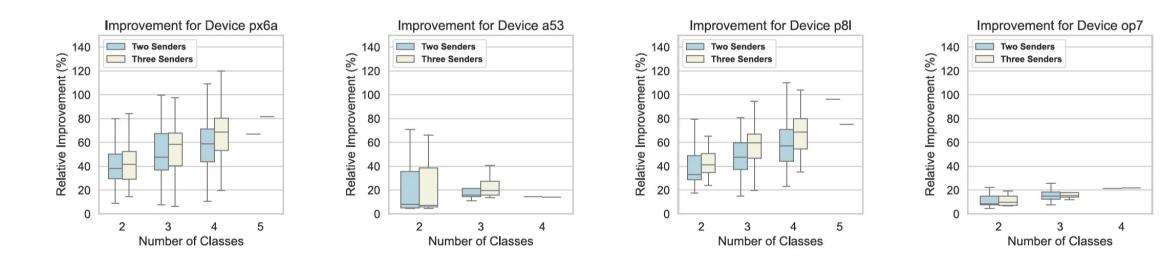
$$P = \frac{T_{del}}{T_{tot}} = \frac{t_{del} - t_{sent}}{t_{del} - t_{tx}}$$
On single transmissions
$$T_{\Delta sent} = (T_{sent}^{j} - T_{sent}^{j-1})/T_{sent}^{j-1}$$

$$T_{\Delta del} = (T_{del}^{j} - T_{del}^{j-1})/T_{del}^{j-1}$$
On consecutive transmissions

2: for each receiver location r from 1 to n do for each $S_{i,r,i}$ in D_i for all *i* do 3: Initialize a list $L_{i,r}$ to hold data for concate-4: nation for each D_k where $k \neq i$ do 5: Find $S_{k,r,l}$ in D_k such that $|t_{del,i,r,j}|$ – 6: $t_{del,k,r,l}$ is minimized 7: Add $S_{k,r,l}$ to $L_{i,r}$ end for 8: NewRecord_{*i*,*r*} \leftarrow Concatenate($L_{i,r}$) 9: $D_{\text{concat}} \leftarrow D_{\text{concat}} \cup \{\text{NewRecord}_{i,r}\}$ 10: Clear L_{ir} 11: end for 12: 13: end for

Expanded Features:

$$\mu^{(s,r)} = \frac{1}{z} \sum_{i=1}^{z} t_{\operatorname{del},i}^{(s,r)}$$


 $Median^{(s,r)} = Median\{t_{del,1}^{(s,r)}, t_{del,2}^{(s,r)}, \dots, t_{del,z}^{(s,r)}\}$

$$\sigma^{(s,r)} = \sqrt{\frac{1}{z-1} \sum_{i=1}^{z} (t_{\text{del},i}^{(s,r)} - \mu^{(s,r)})^2}$$

$$\Delta \mu^{(s_1,s_2,r)} = \mu^{(s_1,r)} - \mu^{(s_2,r)}$$

Mean, Median and Standard Deviation per two sender locations

Results for Multiple Senders

Countermeasures

V

ASTRA-5G – A UE security testing framework

Collaboration with Syed Khandker, Evangelos Bitsikas, Michele Guerra, Aanjhan Ranganathan, Roger Piqueras Jover

Image source: IPLook/GSMA

5G SA User Equipment (UE) Security

4G LTE EPC	4G/5G Non-sta	ndalone(NSA)	5G Stand-alone(SA)
LTE Core	LTE Core	5G Core	5G Core (5GC)
(EPC)	(EPC)	(5GC)	
	LTE RAN	5G RAN	5G RAN
UE		UE	UE
4G		5G NSA	5G SA

ETSI TS 133 501 V17.5.0 (2022-05)

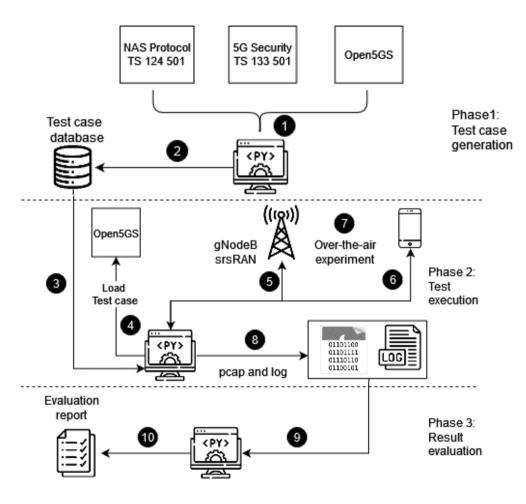
5G: Security architecture and procedures for 5G System (3GPP TS 33.501 version 17.5.0 Release 17)

- Do the implementations of the UE following the specifications?
- An over-the-air test may reveal the real scenario

5G SA User Equipment (UE) Security

Need for frameworks verifying the security of implementations, specifically 5G SA UE devices

Paper	Venue	Generation	Торіс
DoLTEest	Usenix Sec'21	4G	Negative UE security testing
Noncompliance as Deviant Behavior	CCS'21	4G	UE security
Never Let Me Down Again	WiSec'23	4G/5G	Bidding down attacks on UE
UE Security Reloaded	WiSec'23	5G	UE security
ASTRA-5G	WiSec'24	5G	UE security


Automated Over-the-Air Security Testing and Research Architecture for 5G SA Devices

- Users can generate variety of test cases
- Tests can be executed automatically one after another (e.g., 4 tests/minute)
- Evaluation reports are generated, eliminating time-consuming & laborintensive manual checks
- Users do not need deep knowledge in this domains to conduct the tests

ASTRA-5G – Automation Process

Striving for as much automation as possible

ASTRA-5G – Test Cases

- A **test case** is a set of instructions to be executed in the core network to send a fabricated signal to the UE via RAN.
- The follow-up uplink message reveals the UE's response to the test.
- A test case can be formulated in a way that either follows the protocol or violates it.
- Therefore, the follow-up uplink message reveals whether UE adheres to the protocol or not.

```
[{ // Pre-AKA
  "ue ul handle": "null",
  "dl reply": "null".
  "command mode": "null".
  "dl params": "null"
 [ // AKA
  "ue ul handle": "registration request",
  "dl_reply": "identity_request",
  "command mode": "send",
  "dl params": {
   "identity type":
"OGS NAS 5GS MOBILE IDENTITY SUCI"
 { // Post-AKA
  "ue ul handle": "null",
  "dl reply": "null",
  "command_mode": "null",
  "dl params": "null"
31
```

ASTRA-5G – UE Response

Time	Source	Destination	Protocol	Length Info			
1 0.000000	127.0.1.1	127.0.0.5	NGAP/NAS-5GS/NAS-5GS	200 InitialUEMessage, Registration request, Registration request			
2 0.000280	127.0.0.5	127.0.1.1	NGAP/NAS-5GS	108 SACK (Ack=0, Arwnd=106496) , DownlinkNASTransport, Identity request			
7 0.200582	127.0.1.1	127.0.0.5	NGAP/NAS-5GS	132 UplinkNASTransport, Identity response			
			Wireshark · Packet	t 2 · Test_case.pcap —			
⊾ Ttem 1:	id-RAN-UE-NGAP-ID						
	id-NAS-PDU						
	colIE-Field						
	id-NAS-PDU (38)						
	ticality: reject (0	9)					
val							
	NAS-PDU: 7e005b01						
	- Non-Access-Stratur	m 5GS (NAS)PDU					
	→ Plain NAS 5GS M						
	Extended prot	cocol discrimin/	ator: 5G mobility managem	ment messages (126)			
	0000 = Spare Half Octet: 0						
	0000 = Security header type: Plain NAS message, not security protected (0)						
	Message type: Identity request (0x5b)						
		Spare Half Octet	ζ: Θ				
	▼ 5GS identity type						
		= Type of ident:	ity: SUCI (1)				

ASTRA-5G – Possible Test Cases

- Requesting IMEI before 5G-AKA completion
- Request to accept null integrity / cipher algorithm
- Sending a security-protected message as a plain message
- Using an inappropriate security header type
- Sending a message out of sequence
- Parameter violation: ABBA, RAND, AUTN, ngKSI tsc, ksi, GMM cause, etc.

	Test Case Generator	r –					
Select Uplink:	authentication_response	•					
Select Downlink:	security_mode_comman						
nas_security_encryption							
nas_security_integrity							
security_header_type							
selected_eps_nas_secu	irity_algorithms						
eap_message							
imeisv_request							
ngksi_tsc							
ngksi_ksi							
🔳 abba							
replayed_ue_security_capabilities_nr_ea							
replayed_ue_security_d	capabilities_nr_ia						
replayed_ue_security_capabilities_eutra_ea							
replayed_ue_security_capabilities_eutra_ia							
replayed_ue_security_d	capabilities_gea						
additional_security_inf	ormation_retransmission						
additional_security_inf	ormation_derivation						
replayed_s1_ue_securi	ty_capabilities_nr_ea						
replayed_s1_ue_securi	ty_capabilities_nr_ia						
replayed_s1_ue_security_capabilities_eutra_ea							
replayed_s1_ue_securi	ty_capabilities_eutra_ia						
More Options:							
Send as plain message		□ Use ALL selected	params				
Seed:							
Number of Tests:							
	Execute						

ASTRA-5G – Experiment Setup and Verification

Device	Chipset	OS	Model	Release
Honor X9a 5G	Snapdragon 695	Android 12	RMO-NX1	2023
Huawei P40 Pro 5G	Kirin 990 5G	Android 10	ELS-NX9	2020
Oppo Reno8 Z 5G	Snapdragon 695 5G	Android 13	CPH2457	2022
Realme 8 5G	Dimensity 700	Android 11	RMX3241	2021
OnePlus Nord 2 5G	Dimensity 1200 5G	Android 11	DN2101	2021

Test Evaluation

- Checking the hooking point, DL message, and parameters from the test case
- Identify the same from the pcap file
- Retrieving the UE response for the test case
- Evaluate whether the UE response aligns with the state and parameters according to the protocol

ASTRA-5G – Example Test Case 1: Identity Report

4.4.4.2 Integrity checking of NAS signalling messages in the UE

Except the messages listed below, no NAS signalling messages shall be processed by the receiving 5GMM entity in the UE or forwarded to the 5GSM entity, unless the network has established secure exchange of 5GS NAS messages for the NAS signalling connection:

a) IDENTITY REQUEST (if requested identification parameter is SUCI);

SL	Test Name	Test content	UE response	Status	Remark
1	test_case_0	Hooking point: registration request Downlink command: identity request 5G-AKA: Not completed Message send as: Plain Requested identity: TMSI	No response	Pass	Discarded, because of requested identity type: TMSI which should not be given for plain message or before 5G-AKA complete
2	test_case_1	Hooking point: registration request Downlink command: identity request 5G-AKA: Not completed Message send as: Plain Requested identity: IMEI	No response	Pass	Discarded, because of requested identity type: IMEI which should not be given for plain message or before 5G-AKA complete
3	test_case_2	Hooking point: registration request Downlink command: identity request 5G-AKA: Not completed Message send as: Plain Requested identity: SUCI	Identity response	Pass	Identity type: SUCI

Christina Pöpper (NYUAD) : Securing Cellular Networks: Challenges from 5G to Next-Generation Systems

ASTRA-5G – Example Test Case 2: Plain Messages and Protected Messages

Once the secure exchange of NAS messages has been established, the receiving 5GMM entity in the UE shall not process any NAS signalling messages unless they have been successfully integrity checked by the NAS. If NAS signalling messages, having not successfully passed the integrity check, are received, then the NAS in the UE shall discard that message.

test_case_2	Hooking point: service request Downlink command: identity request 5G-AKA: Completed Message send as: Plain Requested identity: SUCI	Identity response	Fail	After key establishment, plain message should be not be processed
test_case_3	Hooking point: service request Downlink command: identity request 5G-AKA: Completed Message send as: Plain Requested identity: No identity	Identity response	Fail	After key establishment, plain message should be not be processed
test_case_15	Hooking point: service request Downlink command: configuration update command 5G-AKA: Completed Message send as: Protected Security header: Integrity protected (1)	Configuration update complete	Pass	Configuration update successfully completed
test_case_16	Hooking point: service request Downlink command: configuration update command 5G-AKA: Completed Message send as: Protected Security header: Integrity protected and ciphered (2)	Configuration update complete	Pass	Configuration update successfully completed

Christina Pöpper (NYUAD) : Securing Cellular Networks: Challenges from 5G to Next-Generation Systems

ASTRA-5G – Summary of Results

Test	Huawei	Oneplus	Honor	Орро	Realme
Identity request other than SUCI in plain message	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Identity requested in plain message after 5G-AKA completed	X	\checkmark	X	×	\checkmark
Security header type mismatch	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Non-zero ABBA	\otimes	\otimes	\otimes	\otimes	0
Deregistration accept before registration complete	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Identity request for unlisted identity type	\checkmark	X	X	×	×
Parameter violation (RAND, AUTN, ngKSI, GMM cause etc.,)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Null-Cipher / integrity algorithm acceptance	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Protected message as plain message	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Message out of sequence or state	√	√	\checkmark	\checkmark	\checkmark

Note:

- \checkmark = Pass X = Fail \otimes = some violation / inconclusive
- We have reported our findings to relevant manufacturer

ASTRA-5G – LLM Based Evaluation

- Manual Verification takes a lot of time Can LLMs help us?
- ChatGPT Google Bard LLAMA-2 TelecomGPT

Prompt: This is a security test for a UE. The UE sent a registration request to the AMF. Then the AMF sent an identity request to the UE. The downlink message sent by the AMF was a plain 5GS NAS message, with the requested identity type = IMEI. Upon receiving the downlink message, the UE did not respond. At that time, AKA was not completed. The packet capture during the test is as follows:

0.0, UE to AMF, InitialUEMessage, Registration request, Registration request 0.0012581348419189453, AMF to UE, SACK (Ack=0, Arwnd=106496), DownlinkNASTransport, Identity request

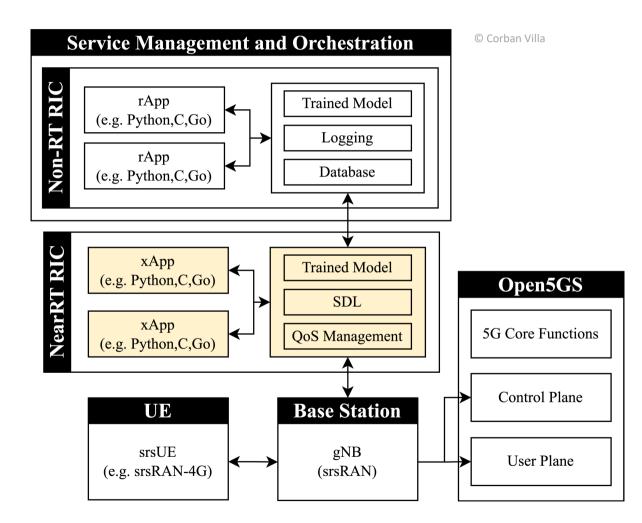
Did the UE pass or fail the test? If a decision cannot be made, report it as inconclusive. Always include the reason for your decision.

ChatGPT Answer: Based on the provided information, the UE behavior appears to be secure. The UE did not respond to the identity request from the AMF because the AKA (Authentication and Key Agreement) was not completed. This is a security *measure to prevent* unauthorized access or manipulation of the UE's *identity. The UE is correctly* waiting for the completion of the AKA before responding to the identity request, which is a good practice in maintaining the security of the UE. Therefore, the UE passes the test.

ASTRA-5G – Summary

- 5G SA testing is not straightforward, requires handling all the network components e.g., core, RAN, and UE.
- Automation significantly reduces testing complexity and broadens the testing scope (e.g., order of multiple minutes to ≈15 seconds).
- Such open source tools can ensuring transparency and independence in testing.
- In the future, LLMs will likely play a crucial role in the cellular security domain.

Github Repo



ORAN Security

Open Radio Access Network (ORAN)

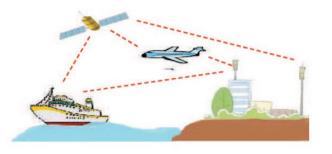
A new wireless communication architecture

- Open standards for 5G and 6G network deployments
- Softwarization of infrastructure: Softwaredefined networking (SDN).
- Al and machine learning pipelines
- Multi-vendor support
- Cloud Radio Access Networks (C-RAN) inspired

Open Radio Access Network (ORAN)

What are the new attack vectors, threats and vulnerabilities specific to ORAN?

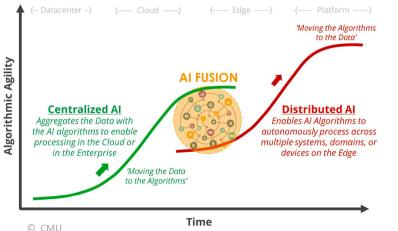
A first step: A graph-based ORAN threat mapping



© Corban Villa

Conclusion & Outlook

Towards 6G Security Research



Distributed AI & Intelligent Radios

Protection against ML attacks:

backdoors, injection, model pollution

Global Coverage

- Securely Connecting & Integrating Vertical Applications as diverse as Satellite, UAV, Maritime, Terrestrial
- Not introducing new vulnerabilities at their boundaries

Post-Quantum Crypto/Algorithms

- Integration of PQ mechanisms
- Realization of quantum exchange

Christina Pöpper (NYUAD) : Securing Cellular Networks: Challenges from 5G to Next-Generation Systems

Conclusion

• Our Research Focus:

Mobile/Cellular Network Security

Secure Localization & Aviation

Mis-/Disinformation Campaigns

Anonymous Communication

LLM/ML Security & Privacy

 Interested in collaborations – Please reach out to me if you'd like to know more or would like to collaborate

Thank You for Your Attention!

Christina Pöpper christina.poepper@nyu.edu Cyber Security & Privacy Lab (CSP-lab) https://www.poepper.net

