5G & Emerging Security Landscape

Suresh Nair, Chair 3GPP Security WG, Principal Security Standardization Engineer, Nokia

NO<IA

Agenda

- 1. 5G Security Drivers and Overall Vision
- 2. 5G Potential Attack Vectors
- 3. 5G Security Standardization: Rel-15 Features
- 4. 5G Security Standardization: Rel-16 Features
- 5. 5G Security Standardization: Rel-17 Features
- 6. 5G Security Standardization: Rel-18 Features
- 7. 6G: Emerging technology drivers
- 8. 6G: Emerging threat landscape
- 9. Post quantum Cryptography
- 10.Open issues and need for collaboration

5G Security Drivers and Overall Vision

From LTE to 5G: Adopting New Networking Paradigms

Crucial Security Functions in the 3GPP 5G System

Red: Functions crucial for the security architecture

5G Potential Attack Vectors

5G Security Standardization: Rel-15 Features

Unified authentication framework	Access-agnostic authentication	Enhanced subscriber privacy (SUPI is encrypted to SUCI)	Split RAN (CU+DU) security
Secondary authentication (Access to ext. DN)	Network Slice security	Service based architecture in 5GC	PLMN Interconnect security for roaming
5GS-EPS interworking security	LTE-NR Dual Connectivity	user plane integrity protection	Ultra Reliable Low Latency Communication (URLLC)

5G Security Standardization: Rel-16 major features

Non-Public Networks	Enhanced SBA	Network Slice Specific authentication	CIOT Enhancements
Wireless Wireline convergence	Integrated access backhaul	Enhanced UPIP	Longterm Root key update
Authentication Key management for Applications (AKMA)	V2X (Vehicle to anything)	Security Impact of Virtualization	Security Assurance for all 5G NFs

5G Security Standardization: Rel-17 major features

5G Proximity services	5G Multicast Broadcast Services	Network Automation	Uncrewed Aerial systems
Integration of GBA in to 5GC	Industrial IoT	5G Messaging	Multi USIM
LTE UPIP	V2X (Vehicle to anything)	Non-Public Networks	Security Assurance

5G Security Standardization: Rel-18 major features

Zero Trust Architecture	AI/ML Security aspects in RAN	AI/ML Security aspects CN	Certificate management
Proximity Based services	Subscriber-aware northbound API access in CAPIF (SNAAPPY)	Security Impact in Virtualization	Roaming HUB support
Id Privacy	Non-Public Networks	Security Assurance	24 study topics

6G- Emerging Technology drivers

Enabling ultra- low-latency applications	Supporting intermittent connectivity	Creating wireless service platforms	Densifying cells
Scaling up edge/fog computing	Sharing spectrum	Using sub-THz spectrum bands	Sharing infrastructure
Using open interfaces	Utilizing artificial intelligence and machine learning	Internetworking with Wi-Fi	Internetworking with satellite networks

6G: Emerging Security & threat landscape

device

Access network Core network Platform evolution Device evolution evolution evolution Different types of \succ Zero trust security devices: simple IoT, principles need to be smart sensors, adopted from the Dynamic \triangleright XR/VR devices, beginning Disaggregated \triangleright authentication smart phones, Ouantum safe \triangleright RAN in multiple and wearables etc algorithms need to security domains authorization Access security as adopted \triangleright Mobility security \triangleright \triangleright Block Chain per the need of Security procedures \triangleright for multiple RAN applicability in device to certify and verify AP providers Roaming Different security the integrity of \triangleright Security for AIML \triangleright Security algorithms and virtualized products models protocols Dynamic Security \triangleright High security Assurance storage within the

VO<IA

6G: Post Quantum Cryptography

NIST selection of algorithms

- CRYSTALS-Kyber: For general encryption.
- ✤ CRYSTALS-Dilithium: For digital signatures.
- Expected follow up work:
 -Adoption of the algorithms in different application domains

Follow up in 3GPP

- New authentication protocol and algorithm for UE-network authentication
- Flexible protocols to support any algorithm including PQC algorithm.
- Authentication based on device capability

6G Security: Open issues and need for further collaboration

Open issues

Follow up in 3GPP

- Achievements and progress from 2G to 5G is quite impressive.
- But there are gaps as well, obvious ones are:
 - ✤ Lack of Security for PWS messages.
 - Technology progress makes it increasing easy to mount False Base Stations and mount different privacy and security attacks.
 - Roaming security loopholes, no clear regulations

- Regulatory inputs are lacking in SDOs, hence no impetus to adopt security solutions.
- Global regulations are difficult to achieve, may vary from country to country.
- Atleast major geographical areas need to be represented.
- Solutions need to formulated in flexible manner, easy to adopt to have security or not have security.

Unless multiple parties work together, good standardization doesn't happen resulting in strong secure networks !

