Looking Beyond Microarchitectural-Only Side Channels

Mengjia Yan

mengjia@csail.mit.edu
http://people.csail.mit.edu/mengjia/

CRC Seminar Talk October 20, 2022

Meltdown & Spectre on the Headlines in 2018

Meltdown and Spectre: 'worst ever' CPU bugs affect virtually all computers

Everything from smartphones and PCs to cloud computing affected by major security flaw found in Intel and other processors – and fix could slow devices.

Current Side Channel Research Landscape

The Age of Pervasive Hardware Attacks

However...

Limitations of Looking At Microarchitectural-only Side Channels

- Part 1: Miss threats that arise from compound threat models
- Part 2: Misunderstand root causes of existing side channel attacks

Buffer Overflow

Buffer[0]
Buffer[1]
...
Function Pointer

Buffer Overflow

ARM Pointer Authentication

PAC = crypto_func(pointer, salt, key)

Two Operations

Sign

Before saving a pointer to memory, compute the PAC

Verify

Before using a pointer, check the pointer's PAC

Buffer Overflow

Buffer Overflow

Invalid PAC means we crash!

Extending ARM Pointer Authentication

PAC it up: Towards Pointer Integrity using ARM Pointer Authentication

Hans Liljestrand, Aalto University, Huawei Technologies Oy; Thomas Nyman, Aalto University: Kui Wana Huawei Technologies Oy Tampere University of Technologies

Ca

PTAuth: Temporal Memory Safety via Robust Points-to Authentication

Reza Mirzazade Farkhani, Mansour Ahmadi, and Long Lu, Northeastern

Protecting Indirect Branches against Fault Attacks using ARM Pointer Authentication

Pascal Nasahl

Graz University of Technology
pascal.nasahl@iaik.tugraz.at

Robert Schilling

Graz University of Technology
robert.schilling@iaik.tugraz.at

Stefan Mangard

Graz University of Technology

Lamarr Security Research

stefan.mangard@iaik.tugraz.at

Hardware-based Always-On Heap Memory Safety

Yonghae Kim

Georgia Institute of Technology
yonghae@gatech.edu

Jaekyu Lee

Arm Research
jaekyu.lee@arm.com

Hyesoon Kim

Georgia Institute of Technology
hyesoon@cc.gatech.edu

The security properties of these mechanisms have been examined **solely** under the memory safety threat model.

Threat Model

Key Insight

Break PAC with Microarchitectural Attacks

- 1. Guess a PAC speculatively to prevent crashes
- 2. Leak verification results via side channel

Speculative Execution


```
if (...) { //Branch
    Inst A
    Inst B
}
```


Micro-architecture side effects are not rolled back

PACMAN Gadgets

```
if (condition):
    verified_ptr = AUT(guess_ptr) // AUT
    load(verified_ptr) // LD
```

Data Gadget

Attack Procedure

```
if (condition):
   verified_ptr = AUT(guess_ptr) // AUT
   load(verified_ptr) // LD
```


TARGET

The world's first desktop CPU that supports Pointer Authentication.

Image: Apple ("Apple Unleashes M1")

Challenges of Real World Hardware

- No documentation of microarchitectural details.
- No high resolution timer.
- macOS is a difficult system to integrate attacks on.

Essentially, we had to reinvent the wheel.

Conjectured TLB Hierarchy

PAC Oracle Accuracy

With a highly reliable PAC oracle, the attacker can brute-force the PAC value.

PacmanOS

A Rust-based bare metal environment for performing experiments.

PACMAN @DEFCON

Takeaway 1: New threats arise from compound threat models

Limitations of Looking At Microarchitectural-only Side Channels

- Part 1: Miss threats that arise from compound threat models
- Part 2: Misunderstand root causes of existing side channel attacks

Microarchitectural Timing Side Channels

Microarchitectural Timing Side Channels

A Cache-Occupancy Attack*

ATTACKER'S CODE loop { start = time() counter = 0; while(time() - start < 5ms) {</pre> counter++; SWEEP_CACHE(); Trace[start] = counter;

^{*} Shusterman, et al. "Prime+Probe 1,JavaScript 0: Overcoming Browser-based Side-Channel Defenses." USENIX Security'21

Website Fingerprinting

A Surprising Experiment

```
ATTACKER'S CODE
loop {
  start = time()
  counter = 0;
  while(time() - start < 5ms) {</pre>
    counter++;
      REMOVE MEMORY ACCESSES
  Trace[start] = counter;
```


What Is The Primary Side Channel?

ML-assisted side-channel attacks work as a black box.

It is challenging to find the root cause(s).

System Interrupts

- Used to deal with asynchronous events
 - e.g. Graphics interrupts render content on a display
- Some can be "pinned" to specific cores, some can't

Non-Movable Interrupts

- Can't be isolated from any cores
- Are necessary for the operating system to function
- Have not been studied in detail for side channels

System Instrumentation

In the kernel space: use eBPF

- Allows instrumentation of the Linux kernel at runtime
- We developed a tool to monitor interrupt characteristics by recording time at beginning and end of interrupt handlers

In the user space: attacker code in Rust

Records time leaves and re-enters the user space

Time

Takeaway 2: There's always a bigger fish!

Need comprehensive security analysis in complex SW-HW systems

End of The Story?

- Run in separate VMs with interrupts pinned properly
 - 88.2% → 91.6%

How to decipher signals from the ML model output?

A "bigger bigger" fish?

Looking Beyond Microarchitectural-Only Side Channels

Takeaway 1: New threats arising from compound threat models

Takeaway 2: Need comprehensive security analysis for complex SW-HW systems

Learning Computer Architecture Security For Fun — 5 Lab Assignments

The Team

Peter Deutsch

Jules Drean

Yuheng Yang

Shixin Song

Joseph Ravichandran

Jack Cook

Mengyuan Li

Miguel Gomez-Garcia

Looking Beyond Microarchitectural-Only Side Channels

