

Novel Approaches to Preserving Utility in Privacy Enhancing Technologies

Meisam Mohammady

Research Scientist, Data61

CSIRO, Australia

June 2022

CYBER SECURITY COOPERATIVE RESEARCH CENTRE

Outline

- Introduction
- Novel Approaches to Preserving Utility in Privacy Enhancing Technologies
 - *I. Multi-view*: Preserving Utility in Network Trace Anonymization
 - *II. DPOAD*: **D**ifferentially **P**rivate **O**utsourcing of Anomaly **D**etection
- Ongoing Research

Outline

- Introduction
- Novel Approaches to Preserving Utility in Privacy Enhancing Technologies
 - *I. Multi-view*: Preserving Utility in Network Trace Anonymization
 - *II.* DPOAD: **D**ifferentially **P**rivate **O**utsourcing of Anomaly **D**etection
- Ongoing Research

The Need for Data Privacy

Privacy Issues and Regulations

- Customers' activities can be exploited by unauthorized parties through targeting them with Ads, black mailing, etc. [USENIX 06]
- Leaked network topology information may cause other attacks, e.g., DoS [INFOCOM 12]
- According to GDPR Article 28, providers cannot share tenants' data without protection while acquiring the services of third parties

Privacy Degrades Utility (Trade-off)

Finding the optimal point for each application is important and challenging.

Highlight of the Proposed Systems

Outline

- Introduction
- Novel Approaches to Preserving Utility in Privacy Enhancing Technologies
 - *I. Multi-view*: Preserving Utility in Network Trace Anonymization
 - II. DPOAD: **D**ifferentially **P**rivate **O**utsourcing of Anomaly **D**etection
- Ongoing Research

Privacy and Utility Requirements

If two real addresses share first X bits, then the same two anonymized addresses

share first X bits

Taxonomy of attacks Against Anonymized Traces

Eatgenpieotiog [2]

Semantic Attacks on Prefix Preserving Anonymization (CryptoPAn)

(Structure Recognition)

Existing Anonymizations Techniques

Tool name	Anonymized Fields				Anonymization method				Weaknesses			
	Netflow fields	IP address	Port	Header	Payload	Prefix- preserving	Permutation	Truncation	Hashing	Shifting	Highly sanitized	Semantic attacks
Anontool [ICC 06]	•	•				•	•		•		•	•
CANINE [ICTSMA 05]	•	•	•			•	•			•	•	•
CoralReef [USENIX 01]	•	•	•			•	•	•				•
Flaim [USENIX 06]	•	•	•			•	•		•	•	•	•
IPsumdump		•		•		•						•
NFDUMP	•	•			•	•						•
SCRUB [CORR 07]		•		•	•		•				•	
TCPanon					•						•	
tcpdpriv		•		•	•	•	•	•			•	•
tcpmkpub [SIGCOMM 06]		•		•	•	•		•				•
tcpurify		•			•		•	•				•

Main Idea Privacy

Trade-off

Privacy

Can we have the best of both worlds by sacrificing something else

Utility

(more expendable)?

Answer: Preserve both privacy/utility with more computations (today's computation is cheaper esp. with clouds)

Multi-view Approach in a Nutshell

- Data owner asks analyst to analyze multiple views of the original data
 - Privacy: The real view is hidden among many fake views
 - ➤ Utility: Data owner secretly retrieves the analysis results of the real view
- Key challenge: How to minimize the communication overhead considering the sheer size of network traces?

The Multi-view Approach

The Multi-view Approach Benefits

- > The adversary is an **honest-but-curious** analyst
- The goal of the adversary is to find all possible *matches* between the anonymized and original traces
- Suppose the trace consists of *d* groups (e.g., those in the same subset), and among these an *α*-knowledge adversary can successfully inject or fingerprint *α* (≤ *d*) groups.

Quantifying View Indistinguishability

Fake views must be generated such that the adversary cannot **distinguish** them from the real view!

 α -knowledge adversary

Definition. A multi-view solution is said to satisfy ϵ –Indistinguishablity against an α -knowledge adversaryif and only if

$$e^{-\epsilon} \leq \frac{\Pr(\text{view i may be the real view})}{\Pr(\text{view r may be the real view})} \leq e^{\epsilon}$$

 ϵ would depend on the specific design of a multi-view solution.

 ➢ Scheme I: Perfect Indistinguishability (*ϵ*=0) with less protected partitions (Fake views still contain a lot of sensitive information)

Scheme II: Sacrifices some indistinguishability to achieve better protected partitions (in the sense of slightly less real view candidates)

Scheme I: Subnet-based Partitioning Approach

Theorem. The indistinguishability parameter ϵ of the generated views in scheme II is lower-bounded by

$$ln\left[\frac{D^{\alpha}}{d^{\alpha}},\prod_{i=0}^{\alpha-1}\frac{d-i}{D-i}\right]$$

D: Number of distinct addresses d: Number of prefix groups (subnets) α : Adversary's knowledge

Experiments

Dataset

Computational overhead

Comparison between the two schemes

Privacy Evaluation

Dure Octets Geoopping (1877 Geooppis))

Utility Evaluation

Conclusion

- 1) Multi-view approach offers the following features:
 - a) Protects sensitive information in network traces
 - b) Preserves utility by providing a higher ratio of privacy to utility than the state of the art does
 - c) Minimizes communication overhead
- 2) Tradeoff is shifted from privacy-utility to privacy-computation cost, where the cost can be adjusted depending on the desired level of protection

Outline

- Introduction
- Novel Approaches to Preserving Utility in Privacy Enhancing Technologies
 - *I. Multi-view*: Preserving Utility in Network Trace Anonymization
 - *II.* DPOAD: **D**ifferentially **P**rivate **O**utsourcing of Anomaly **D**etection
- Ongoing Research

Outline

1 Introduction

- 2 Novel Approaches to Preserving Utility in Privacy Enhancing Technologies
 - 1 Multi-view: Preserving Utility in Network Trace Anonymization
 - (2) DPOAD: Differentially Private Outsourcing of Anomaly Detection
- 3 Ongoing Research

Motivation: Different Network Slices

Motivation: Network Slices with Privacy Proxy

DP Contradicts Anomaly Detection

Differential Privacy and Anomaly Detection in Home

Asif et al. [CCS'19] Anomaly-Restricted DP

Local Setting

How about

Oustsourcing setting?

DPOAD Overview (Intuition)

Implement the "outsourcing" under continuousinteractions.Sensitivity Update: is to estimate a

DPOAD

(Similar to Kalman Filtering approach) Sensitivity Update: is to estimate a "sensitivity" value which protects the privacy of normal users but sacrifices the privacy of anomalous records

Update

Updated (a posteriori) state estimate

$$\mathbf{\hat{x}}_{k|k} = \hat{\mathbf{x}}_{k|k-1} + \mathbf{K}_k ilde{\mathbf{y}}_k$$

Optimal multiplicative factor

Predict

Predicted (a priori) state estimate

Optimal multiplicative factor
$$\mathbf{\hat{f}}$$
 $\hat{\mathbf{x}}_{k|k-1} = \mathbf{F}_k \hat{\mathbf{x}}_{k-1|k-1}$

Outsource: is to **enforce** the estimated sensitivity value (way smaller and hence less noise to be added)

Pain-free Algorithm [ICML'17]:

Algorithm 1 SENSITIVITYSAMPLERInput: database size n, target mapping $f : \mathcal{D}^n \to \mathcal{B}$,
sample size m, order statistic index k, distribution Pfor i = 1 to m do
Sample $D \sim P^{n+1}$
Set $G_i = \|f(D_{1...n}) - f(D_{1...n-1,n+1})\|_{\mathcal{B}}$ end for
Sort G_1, \ldots, G_m as $G_{(1)} \leq \ldots \leq G_{(m)}$
return $\hat{\Delta} = G_{(k)}$

Laplace mechanism with the sensitivity computed using Algorithm 1 is $\epsilon(m, k), \gamma(m, k)$ -RDP. Elements of effective differentially private sensitivity learning:

1. Monotonic Disentangler:

The process of **mapping** the *data* to *their anomaly scores* to output a *monotonic* version in terms of outlierness.

The process of **scaling** the anomaly scores back to the histogram count to preserve accuracy.

Elements of effective differentially private sensitivity learning:

2. PDF Learning: The process of approximating the PDF of dataset using the noisy anomaly scores

Theorem 3. There is a computationally efficient $(\epsilon, 0)$ -differentially private (α, β) -learning algorithm for C_N that uses $n = O((N + \log(1/\beta))/\alpha^2 + N \log(1/\beta)/(\epsilon\alpha))$ samples.

[NIPS'15]

Experiments

Databset	Size	<pre># of Attributes</pre>
IoT	-	12 events + 10 sensors
Parking	35,718	4
Electric consumption	2M	9
Breast cancer	286	9
Credit card	30,000	23
KDD	494,021	42

Conclusion

- 1) DPOAD provides the first practical differentially private anomaly detection in outsourcing setting.
- 2) We formally benchmark DPOAD under the Laplace mechanism for network, IoT and credit card anomaly (fraudulent) detection.
- 3) Our experimental results demonstrate that DPOAD significantly improves the accuracy of the anomaly detection compared to the baselines.

Outline

1 Introduction

- 2 Novel Approaches to Preserving Utility in Privacy Enhancing Technologies
 - (1) Multi-view: Preserving Utility in Network Trace Anonymization
 - R²DP: Optimizing the Randomization Mechanism of Differential Privacy According to the Application
 - 3 DPOAD: Differentially Private Outsourcing of Anomaly Detection

3 Ongoing Research

Future Research Directions

- Privacy preserving, fair and accountable algorithms
 - Tools:
 - Deep learning
 - Computational learning theory
 - Cybersecurity
 - Applications:
 - Health data monitoring and analysis
 - Cloud computing
 - Safe networking
- Secure distributed computation for IoT and cyber-physical systems
 - Federated Learning
 - Hybrid models like Secure multiparty computation (SMC) + DP

Example: DP for FL Security

Attack Overview

Training Training Inference Defense Target class Ct T(.)Differential T(.)I(.)Privacy Indistinguishable Trigger S_t (DP) Output [19] $\psi(.,s_t)$ Clipping Gaussian Inference Noise local Correct class models Injection $N(0, \sigma^{2}(C, G|))$ I(.)Target class C+ $C \propto$ $\sigma(C) \propto$

System Overview

Publication: Kane Walter, Meisam Mohammady, Surya Nepal, Salil Kanhere. Optimally Closing the backdoor in Federated Learning According to the Model Size. Resubmitted to Privacy Enhancing Technologies (Submitted to TDSC'22).

Concluding Remarks

- Privacy Enhancing Technologies with Optimal Utility
- Ongoing and Future Research
- Results of Active Collaboration:

Email: meisam.mohammady@csiro.au Thank you

Application of DP in Secure Federated Learning

Indistinguishability Analysis

- The statement inside the probability is the adversary's decision on a view, declaring it as a fake view or a real view candidate, using his/her α –knowledge
- Moreover, we note that generated views differ only in their IP values (fp-QI attributes are similar for all the views)
- Hence, the adversary's decision can only be based on the published set of IPs in each view through comparing shared prefixes among those IP addresses which he/she already know (α)

$$e^{-\epsilon} \leq \frac{\Pr(\text{view i may be the real view})}{\Pr(\text{view r may be the real view})} \leq e^{\epsilon}$$

DEFINITION. Migration Function: Let S be a set of IP addresses consisting of d groups of IPs S_1, S_2, \dots, S_d with distinct prefixes s_1, s_2, \dots, s_d respectively, and K be a random CryptoPAn key. Migration function $M : S \times C(\text{set of positive integers}) \to S^*$ is defined as

$$S^* = M(S) = \{S_i^* | \forall i \in \{1, 2, \cdots, d\}\}$$

where $S_i^* = \{PP^{c_i}(s_i \oplus a_j, K), \forall a_j \in S_i\}$

where $C = PRNG(d, d) = \{c_1, c_2, \dots, c_d\}$ is the set of d non-repeating random key indices generated between [1, d] using a cryptographically secure pseudo random number generator.

Scheme II: Key Generation

• Usefulness. Database mechanism $M_{q,f}$ is (γ, ζ) useful if with probability $1 - \zeta$, for every database $d \subseteq D$, $|M_q(d) - q(d)| \leq \gamma$.

• Entropy. Let x be a random variable on \mathbb{R} with PDF f(x). The entropy of x is defined as $H(x) = -\int_0^\infty f(x) \log(f(x))$.

Related Works

- Several existing works
 - Smooth sensitivity [ECML PKDD 15]
 - Anomaly Exclusion [AISec@CCS 16]
 - ML approaches (Stochastic Gradient Descent (SGD)) [CSCML 18]
 - Anomaly Exclusion [CCS' 19]

• Drawbacks of existing solutions

- Most such approaches assume the data-owners are able to run anomaly detection by themselves (Publishing framework vs Outsourcing) which is not the case in our motivation examples
- Outlier detection and privacy protection are intrinsically conflicting tasks. This seemingly impossible problem has not been properly addressed.
 - In case of outsourcing, since the analysis is done on DP-results this contradiction is even more challenging
- Analysis using global sensitivity of outlier counts makes the outputs too noisy

DPOD vs. Existing Works

Pain free RDP functions

Budgeted	Optimise	ρ	γ	m	k
$\gamma \in (0,1)$	m	$\exp\left(W_{-1}\left(-\frac{\gamma}{2\sqrt{e}}\right) + \frac{1}{2}\right)$	•	$\frac{\log\left(\frac{1}{\rho}\right)}{2(\gamma-\rho)^2}$	$\left[m\left(1-\gamma+\rho+\sqrt{\frac{\log\left(\frac{1}{\rho}\right)}{2m}}\right)\right]$
$m\in\mathbb{N},\gamma$	k	$\exp\left(\frac{1}{2}W_{-1}\left(-\frac{1}{4m}\right)\right)$	$\geq \rho + \sqrt{\frac{\log\left(\frac{1}{\rho}\right)}{2m}}$	•	$\left[m\left(1-\gamma+\rho+\sqrt{\frac{\log(\frac{1}{\rho})}{2m}}\right)\right]$
$m\in \mathbb{N}$	γ	$\exp\left(\frac{1}{2}W_{-1}\left(-\frac{1}{4m}\right)\right)$	$ ho + \sqrt{rac{\log(rac{1}{ ho})}{2m}}$	•	m