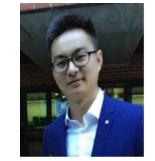


DIMY: Enabling Privacypreserving Contact Tracing

Dr Nadeem Ahmed Senior Research Fellow

Authors and Contributors


Nadeem Ahmed

Regio Michelin

Wanli Xue

Guntur Dharma Putra

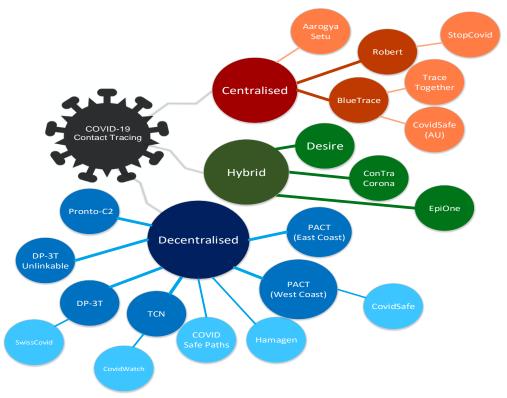
Wei Song

Sushmita Ruj

Prof. Salil S. Kanhere

Prof. Sanjay Jha

- Contact tracing
- Motivation of this work
- Building blocks of DIMY
- Demo
- Performance evaluation
- Q/A


Contact Tracing in Pandemics

- Case investigation technique
 - Establish the close contacts of an infected person to break the chain of infection
 - Experience with previous pandemics
- Manual contact tracing has some limitations
 - Requires a large, trained workforce to cope with the caseload
 - Hard to remember everyone met while infected in the last 2-3 weeks
 - A person may have met people that are strangers
 - Reactive approach
- Proactive digital contact tracing

Digital Contact Tracing

- Use of modern technologies such as smart phone apps, wearables and QR codes etc.
- More than 47 smart phones based digital contact tracing apps [1]
 - Majority employing BLE message exchanges between smart phones to capture the digital handshake

[1] P. H. O'Neill et. al, "A flood of coronavirus apps are tracking us. now it's time to keep track of them", https://www.technologyreview.com/2020/05/07/1000961/ launching-mittr-covid-tracing-tracker/.

Digital Contact Tracing

• Three commonly used architectures

Functionality	Centralised	Decentralised	Hybrid	
Ephemeral ID generation	Backend	Client devices	Client devices	
Contact risk analysis and notification	Backend	Client devices	Backend	
Data stored on client devices	IDs received from the backend and Encounter messages from close contacts	Seeds of positive cases received from the backend + own generated seeds	Encounter tokens and IDs generated	
Data stored on the backend	List of all positive cases + their close contacts	Seeds from all positive cases	Encounter and query tokens	

- Security and privacy analysis of contact tracing apps revealed several risks and issues [2][3]
 - Different trust models for different architectures
 - Apps based on centralised architecture are vulnerable to server-side breaches and malicious *function creep* at the backend
 - Several apps are vulnerable to linkage attacks where real identities of positive cases can be easily established
 - High communication, processing and storage costs

[2] S. Vaudenay, "Centralized or decentralized? The contact tracing dilemma", IACR Cryptol. ePrint Arch. 2020 (2020) 531.
[3] N. Ahmed, R. A. Michelin, W. Xue, S. Ruj, R. Malaney, S. S. Kanhere, A. Seneviratne, W. Hu, H. Janicke, S. K. Jha, "A Survey of COVID-19 Contact Tracing Apps," IEEE Access 8 (2020) 134577–134601.

CYBER SECURITY COOPERATIVE RESEARCH CENTRE

Privacy and Security Concerns

	Tracing Apps & Protocols	Replay/ Relay	Wireless tracking	Location confirmation	Enumeration	DoS	Linkage	Carryover	Social graph
sed	Trace Together (BlueTrace)	V		V	×	~	~	~	Easy
Centralised	CovidSafe (AU) (BlueTrace)	~	~	~	×	~	~	~	Easy
Cen	StopCovid (ROBERT)	~	~	×	×	~	~	×	×
	Aarogya Setu	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	0	0	Easy
	PACT (East Coast)	Limited Replay ✓ Relay	~	×	~	\checkmark	~	~	Difficult
ec -	CovidSafe (UoW)	Limited Replay	~	×	~	~	~	×	Difficult
Ilis	(PACT-West Coast)	✓ Relay							
entre	SwissCovid - DP-3T (low cost)	~	~	×	~	~	~	~	Difficult
Decentralised	DP-3T (unlinkable)	~	~	×	×	~	×	~	Difficult
	CovidWatch (TCN)	~	~	×	×	~	~	×	Difficult
	Pronto-C2	\checkmark	\checkmark	×	×	\checkmark	\checkmark	0	×
	Hamagen	×	×	×	×	×	\checkmark	×	×
	COVID Safe Paths	×	×	×	×	×	\checkmark	×	×
id	DESIRE	 Relay only 	~	×	×	~	×	×	Difficult
Hybrid	ConTra Corona	\checkmark	\checkmark	×	×	~	×	×	Difficult
Í	EpiOne	\checkmark	\checkmark	×	×	~	~	\checkmark	×

Did I Meet You (DIMY) Privacy-Preserving Digital Contact Tracing

 Addressing the privacy, security and performance issues associated with existing digital contact tracing apps

o DIMY [4] provides:

- Full life cycle data privacy protection
- Resilience against many well-known attacks while introducing negligible overheads
- Lower footprint as compared with existing state-of the art apps

o Integration of key technologies

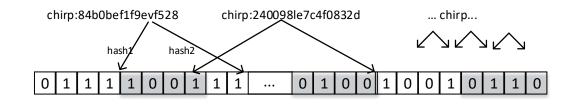
- Diffie-Hellman key exchange
- Shamir secret sharing mechanism
- Bloom Filters
- Blockchain

[4] Ahmed, N et.al, "DIMY: Enabling Privacy-preserving Contact Tracing" https://arxiv.org/abs/2103.05873

Building Blocks for DIMY

o Diffie Hellman Key Distribution

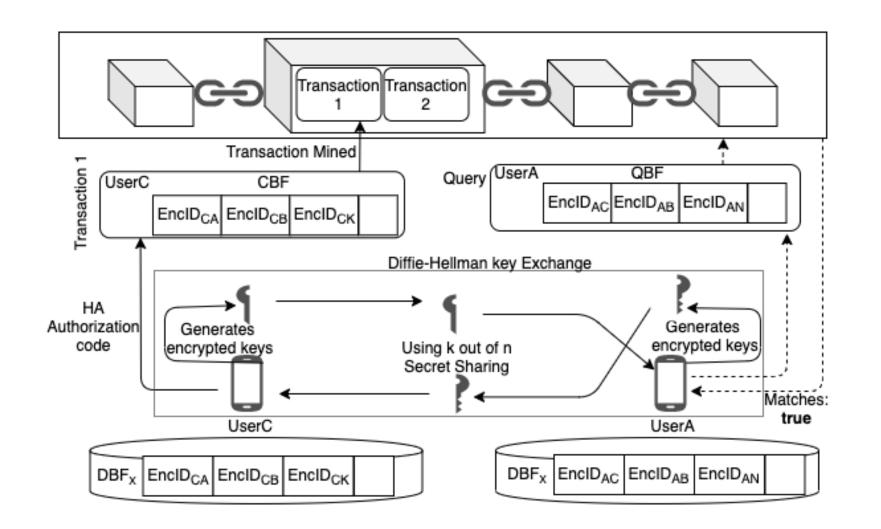
- Share a common key over an insecure channel
- An eavesdropper cannot reconstruct the shared secret in a computationally feasible context even if they have heard all the messages exchanged
- For our work, the shared secret key is treated as the encounter ID


o Shamir Secret Sharing

- Make n shares of the secret such that the secret can be reconstructed given any k shares (k<=n)
- No information can be known about the secret given any number of shares less than k
- Diffie-Hellman messages are exchanged using *k*-out-of-*n* secret sharing

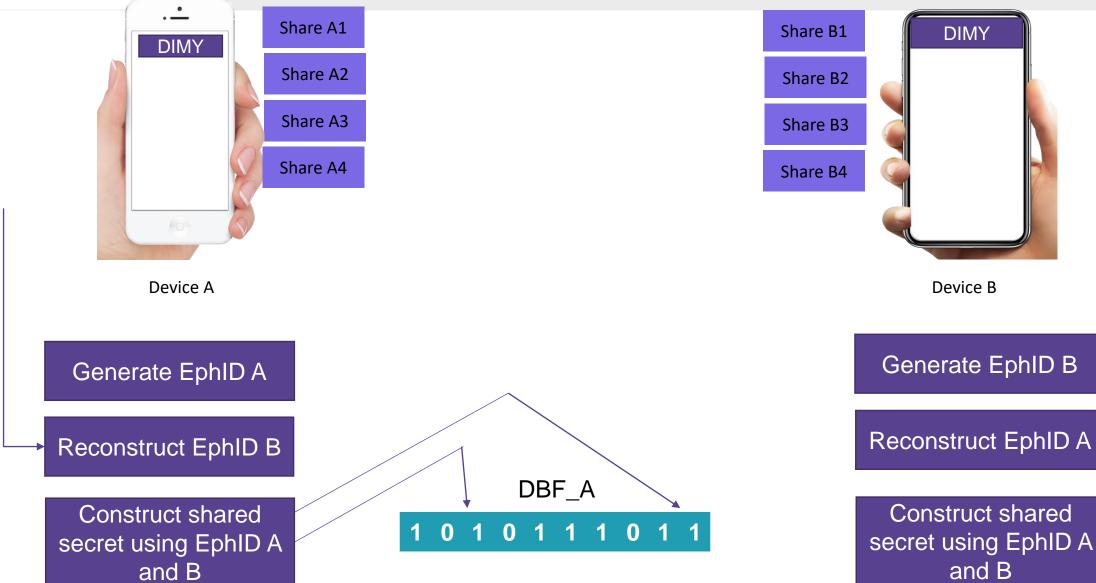
Building Blocks for DIMY

- o Bloom Filters
 - A probabilistic set membership representation that supports efficient membership queries
 - False positives are possible but false negatives are not.

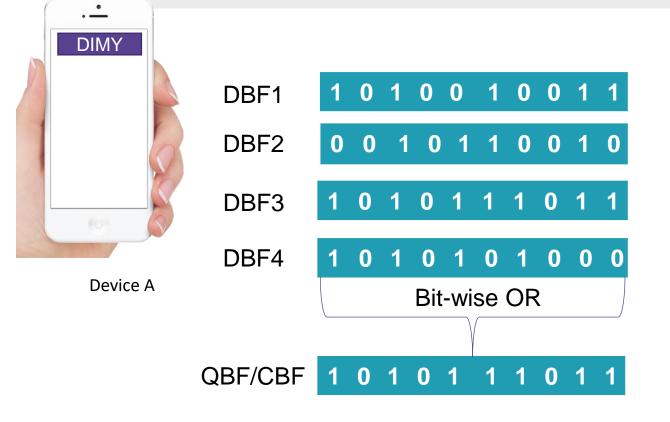


o Blockchain

- Chronologically sequential immutable blocks linked together by hashing of previous blocks
- Provides data integrity, transparency of operations and the decentralized storage



Did I Meet You (DIMY) Architecture



1. DIMY Contact Representation

2. Daily BF, Contact BF and Query BF

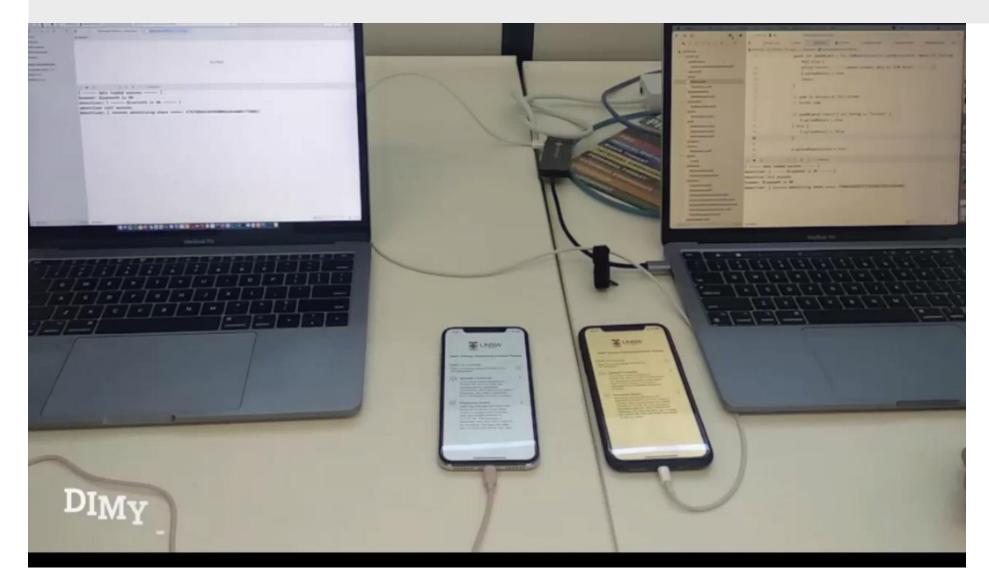
Confirmation /Result of matching

Resilience against attacks

Actors considered in the threat model:

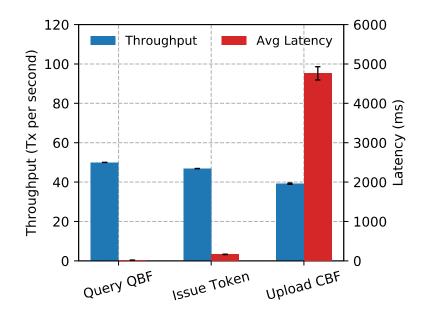
- App users
- External actors
- Backend administrators
- Government
- Health Officials

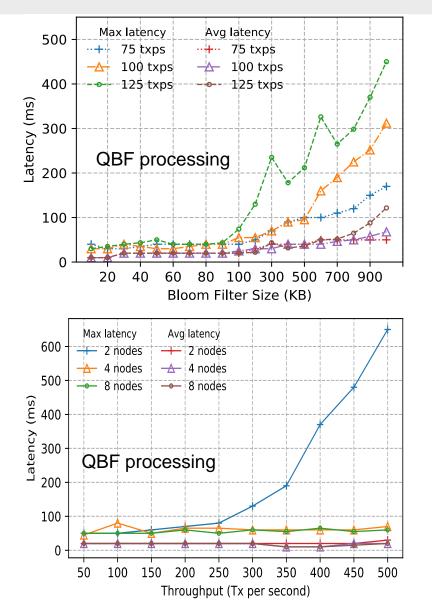
Attacks	DIMY
Replay	Х
Relay	✓
Device Tracking	✓
Carryover	✓
Location confirmation	Х
Enumeration	Х
Denial of service	✓
Linkage	X
Social graph	X



Security, Privacy and Operational Requirements

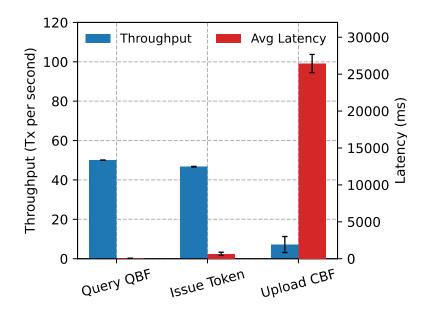
Requirements	Properties	Details	How achieved in DIMY
Security	Minimise false	A user not being warned	Use of Bloom filter that provides guarantees against
	negatives.	despite being in close contact	false negatives during the matching process.
	(Completeness)	of an infected person.	
	Minimise false	A user being warned	Use of Shamir secret sharing and Diffie-Hellman key
	positives.	without a valid close contact	exchange to mitigate false positives due to replay
	(Soundness)	with any infected person.	attacks. False positives are still possible with a low
			probability due to relay attacks and Bloom filter matching.
	Ensure system's	Data maintained at the backend	Use of blockchain as the backend to provide integrity,
	integrity and	is trustworthy and the	availability, and trust.
	availability.	matching service accessible.	
	Confidentiality	Only the health authorities	Health authorities are involved only in the authorisation
Privacy	of health status.	can learn about the status	stage. Use of bloom filters and smart contracts ensures no
	(infected or warned)	of an infected person.	one learns about close-contacts of an infected person.
	Privacy for meeting.	No entity can learn about	Use of Bloom filters to hide the time/date of contacts.
	/contact history.	the contact history of a user.	The back-end server cannot construct a social graph.
		No one can link the anonymous	Use of Ephemeral identifiers and
	Hide user's	IDs with real identities. Health	storage of contact information in Bloom filters.
	identities.	authorities learn this when an	
		infected or at-risk user contacts them.	
	Location privacy.	An adversary cannot track	No location information is captured by the system.
		movement of a device.	Limited local device tracking is possible.
	Minimise	Reducing the amount of contact	Use of space efficient Bloom filters for storage at the
Operational	storage costs.	tracing data stored on mobile devices	client's devices as well as the backend.
		as well as the backend.	
	Minimise	Reducing bandwidth utilisation	Use of BLE advertisement messages reduces number of
	bandwidth usage.	directly helps in prolonging	messages exchanged between the devices. Uploads from
		the battery life of mobile devices.	client's devices consist of short, fixed-size Bloom filters.
	Minimise	Computational cost directly affects	Contact matching and risk analysis process is only
	computational cost.	battery consumption for devices.	performed at the backend. The cryptographic operations
			such as DH key generation and exchange involves group
			exponentiation which are not as computation intensive.

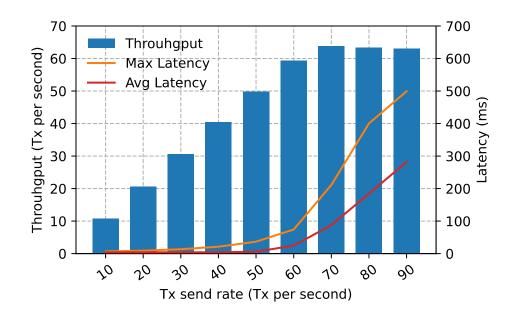

Did I Meet You (DIMY) Demo



Performance evaluation

HyperLedger implemented on a local GPU server (12 cores and 64GB of RAM)





Performance evaluation

Backend on AWS: A single t2.small node with 2.4Ghz CPU and 2GB of RAM Two HyperLedger nodes and one orderer node as Docker containers

Thank You

nadeem.ahmed@unsw.edu.au