Trustworthy Video Analytics

Yuan Hong

Assistant Professor Cybersecurity Program Director Director, DataSec Lab Department of Computer Science Illinois Institute of Technology

> CSIRO, Data61 August 26, 2021

Overview

• Security in Video Analytics (Slides Removed)

Universal 3-Dimensional (U3D) Perturbations for Black-Box Attacks on Video DNNs – Oakland'22

A Flexible Platform for Video Analytics with Differential Privacy (VideoDP) – PETS'20

Video Privacy

• Huge amounts of sensitive information in videos (e.g., vehicle plates, human faces/bodies, and name tags) may raise privacy concerns

Video Surveillance

Traffic Monitoring

Video Privacy Techniques

Computer Vision based Protection

[1] Privacy-Preserving Action Recognition using Coded Aperture Videos[2] Pre-Capture Privacy for Small Vision SensorsInformal privacy guarantee

Cryptographic Protocols

[3] Privacy-Preserving Outsourcing Computation of Feature Extractions Over Encrypted Image Data

[4] PrivacyCam: A Privacy Preserving Camera using uCLinux on the Blackfin DSP

Limited to specific applications (e.g., action recognition or SIFT)

Expensive computation

[1] Wang, et al. "Privacy-preserving action recognition using coded aperture videos." CVPR 2019.

[2] Pittaluga and Koppal. "Precapture privacy for small vision sensors." IEEE TPAMI 2017.

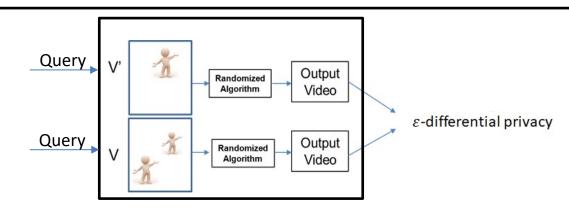
[3] Hu, et al. "Securing SIFT: Privacy-preserving outsourcing computation of feature extractions over encrypted image data." *IEEE Transactions on Image Processing 2016*.

[4] Chattopadhyay and Boult. "PrivacyCam: a privacy preserving camera using uCLinux on the Blackfin DSP." CVPR 2007.

Differential Privacy for Videos

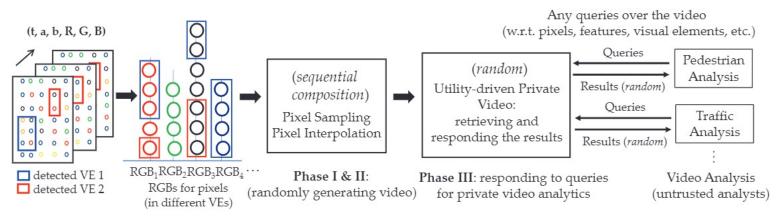
Differential Privacy in Videos (protecting each visual element)

Randomized mechanism A provides ϵ -differential privacy if for any two input videos V and V' that differ in any visual element V (e.g., object or human), and for any output $0 \in range(A)$, we have $e^{-\epsilon} \leq \frac{\Pr[A(V) = 0]}{\Pr[A(V') = 0]} \leq e^{\epsilon}$



Note: 1. Background scene can be a visual element (if requested for protection) 2. Similar to generic differential privacy notion, it can be relaxed as (ε, δ) -DP

VideoDP Framework



Video Pre-processing

ILLINOIS TECH

Utility-driven Private Video

Video Queries

- Detecting and tracking all objects (assign an ID for every object in all the frames)
- Generating utility-driven private video:
 - Sampling pixels for the video with differential privacy
 - Interpolating unsampled pixels (post-processing DP results)
- Privately querying the randomly generated video (e.g., traffic monitoring, and street surveillance): post-processing DP results

Phase I: Pixel Sampling

1. All the RGBs θ_r , $r \in [1, n]$ follow <u>sequential composition</u> in the sampling process and satisfy

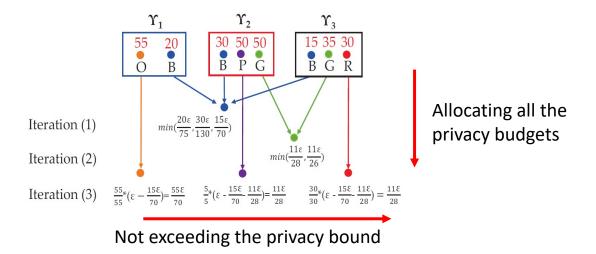
$$\sum_{r=1}^{n} \epsilon(\widetilde{\theta}_r) = \epsilon$$

Impractical to allocate privacy budget for every RGB (n can be as large as 256³) – negligible budgets

- 2. Pixels are categorized into Case (1), (2), (3) with their RGBs
 - Case (1): the RGBs in any visual element but not the background
 - Case (2): the RGBs in the background but not any of the visual element
 - Case (3): the RGBs in the background and at least one visual element
- 3. Case (3): assign privacy budgets to a subset of RGBs and derive sampled pixel counts for them for satisfying differential privacy
- 4. For each RGB, randomly sample pixels with DP to generate a raw output video (with sparse pixels)

Phase I: Budget Allocation

- 1. Derive the optimal **k** RGBs in each visual element (maximizing utility)
- 2. Partition the visual element into k multi-scales and choose the top frequent RGB in each scale
- 3. The criteria for allocating budget:
 - Privacy budgets based on the count distributions of RGBs in different VEs
 - Fully utilizing the privacy budget ϵ



Phase I: Counts Computation

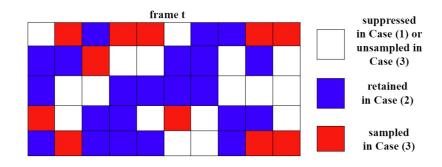
RGB	Video	VEj	Optimal Counts	Sampling
RGB 1	<i>c</i> ₁	c_1^j	<i>x</i> ₁	Pixels for Each RGB
RGB 2	<i>C</i> ₂	c_2^j	<i>x</i> ₂	••••
		•••		

$$Pr[\mathcal{A}(V(\widetilde{\theta}_r)) = O(\widetilde{\theta}_r)] = 1/\binom{c_r}{x_r}$$
$$Pr[\mathcal{A}(V'(\widetilde{\theta}_r)) = O(\widetilde{\theta}_r)] = 1/\binom{c_r - c_r^j}{x_r}$$
$$\implies e^{-\epsilon(\widetilde{\theta}_r)} \le \binom{c_r}{x_r} / \binom{c_r - c_r^j}{x_r} \le e^{\epsilon(\widetilde{\theta}_r)}$$

$$\max\{x_r | \forall j \in [1, n], \binom{c_r}{x_r} / \binom{c_r - c_r^j}{x_r} \le e^{\epsilon(\widetilde{\theta}_r)} \}$$

The left-hand side is monotonic on x_r

Phase II: Pixel Interpolation



- **Post-processing** the raw output video (sampled with DP)
 - > All pixels in Case (1) (pixels with a unique RGB) are suppressed
 - > All pixels in Case (2) (pixels in the background) are retained
 - Pixels in Case (3) are partially sampled
 - Estimating the RGBs for missing pixels (suppressed or unsampled) using Bilinear interpolation

Experimental Datasets

Multiple Object Tracking (MOT) dataset with pedestrians and vehicles UCSD Anomaly Detection (UAD) dataset with crowded pedestrians Boxy Vehicle Detection (BVD) dataset with crowded vehicles

Datasets Avg. Resolution		Video #	Avg. Frame #
МОТ	1920 imes1080	15	846
UAD	740 imes 480	24	180
BVD	2464 imes2056	5	1200

 Table 1. Characteristics of Experimental Datasets

ILLINOIS

TECH

MOT16-04

UADTest-001

BVD-Highway

Evaluations

- RGB Count Distribution
 - KL-divergence measures the count distribution difference of the RGBs in the input and private videos
- RGB Values at Pixel Level
 - Mean square error (MSE) measures the difference between all the RGB values in the input and private videos
- Detection and Tracking Accuracy in the Private Video
 - Precision and <u>Recall</u> in the entire video
 - VE detection accuracy in each frame
- Case study with specific queries in applications
 - Small sensitivity and large sensitivity
 - Benchmarking with the <u>PINQ</u> platform

Pixel-Level and Detection/Tracking Utility

2.00 2.00 MOT UAD 1.75 1.75 BVD 1.50 1.50 Divergence 1.00 Divergence 1.00 0.75 0.75 0.50 0.50 MOT 0.25 0.25 UAD F BVD 0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 2.5 3.0 ۶ ε (a) KL vs ϵ (b) KL vs ϵ (Background VE) 1.0 1.0 MOT UAD BVD 0.8 0.8 A MOT-BG Normalized MSE Normalized MSE 0.0 UAD-BG ₩ BVD-BG MOT UAD 🐺 BVD 0.2 0.2 A MOT-BG UAD-BG 🐺 BVD-BG 0.05 0.0 1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0 ε £

KL-divergence and MSE

(c) MSE vs ϵ (after Phase I) (d) MSE vs ϵ (after Phase II)

• Detection and Tracking (VE counts precision and recall)

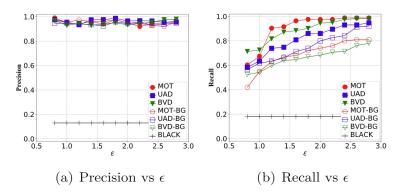
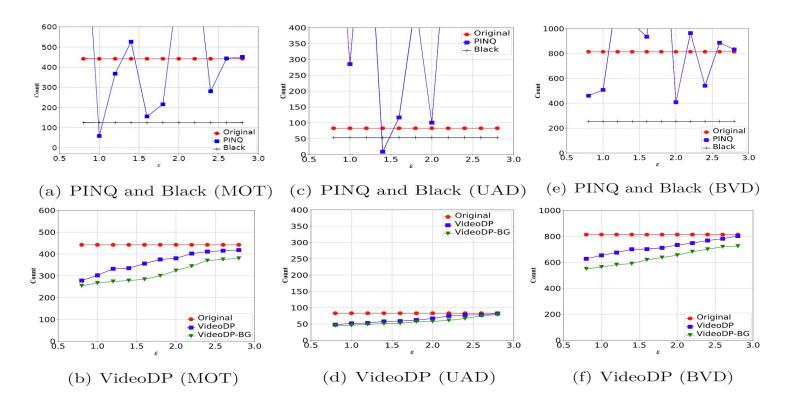


Fig. 5. Visual Elements Detection and Tracking

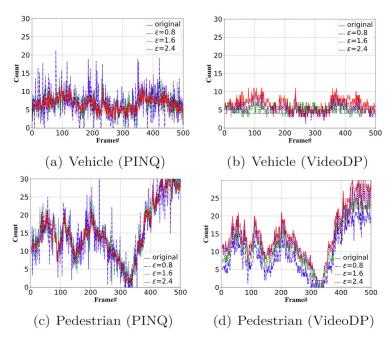
٠

Detection and Tracking (vs. PINQ and Black)



Case Studies

• VE Density (Small Sensitivity)



Pedestrian Stay Time (Large Sensitivity)

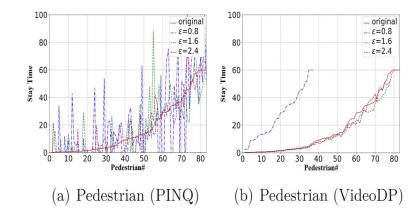


Fig. 7. Pedestrian Stay Time in PED

Case Studies (Cont'd)

• Vehicle Stay Time (Large Sensitivity)

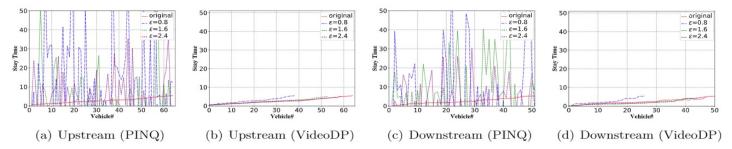


Fig. 8. Vehicle Stay Time in VEH

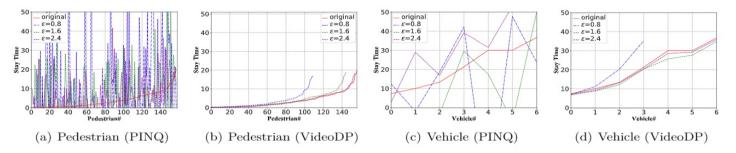


Fig. 9. Pedestrian and Vehicle Stay Time in PV

Representative Frames

(a) Original (b) $\epsilon = 0.8$ (Phase I) (c) $\epsilon = 1.6$ (Phase I) (d) $\epsilon = 0.8$ (Phase II) (e) $\epsilon = 1.6$ (Phase II)

Fig. 13. Representative Frames in the Random Output Video of PED (available for differentially private queries/analysis)

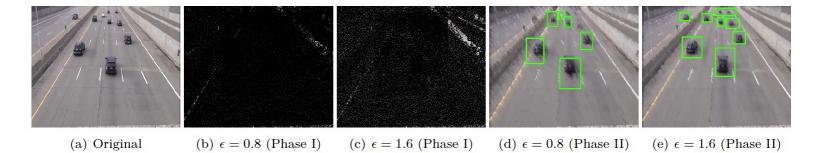


Fig. 14. Representative Frames in the Random Output Video of VEH (available for differentially private queries/analysis)

Thank You! Questions?

Yuan Hong Email: <u>yuan.hong@iit.edu</u> Webpage: <u>http://cs.iit.edu/~yhong/</u>

Acknowledge of Support

My Students (Contributed to the Works) Shangyu Xie

Han Wang