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Overview

• Security in Video Analytics (Slides Removed)
Ø Universal 3-Dimensional (U3D) Perturbations for Black-Box Attacks on Video 

DNNs – Oakland’22

• Privacy in Video Analytics
Ø A Flexible Platform for Video Analytics with Differential Privacy (VideoDP) –
PETS’20
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Video Privacy

• Huge amounts of sensitive information in videos (e.g., vehicle plates, 
human faces/bodies, and name tags) may raise privacy concerns

PETS’20

Video Surveillance Traffic Monitoring
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Video Privacy Techniques

[1] Wang, et al. "Privacy-preserving action recognition using coded aperture videos.” CVPR 2019.
[2] Pittaluga and Koppal. “Precapture privacy for small vision sensors.” IEEE TPAMI 2017.
[3] Hu, et al. "Securing SIFT: Privacy-preserving outsourcing computation of feature extractions over encrypted image 
data." IEEE Transactions on Image Processing 2016.
[4] Chattopadhyay and Boult. “PrivacyCam: a privacy preserving camera using uCLinux on the Blackfin DSP.” CVPR 2007.

• Computer Vision based Protection
[1] Privacy-Preserving Action Recognition using Coded Aperture Videos 
[2] Pre-Capture Privacy for Small Vision Sensors 
Informal privacy guarantee

• Cryptographic Protocols 
[3] Privacy-Preserving Outsourcing Computation of Feature Extractions Over Encrypted Image Data 
[4] PrivacyCam: A Privacy Preserving Camera using uCLinux on the Blackfin DSP 
Limited to specific applications (e.g., action recognition or SIFT)
Expensive computation

PETS’20
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Differential Privacy for Videos

Differential Privacy in Videos (protecting each visual element)

Note: 1. Background scene can be a visual element (if requested for protection) 
2. Similar to generic differential privacy notion, it can be relaxed as (𝜀, 𝛿)-DP

Randomized mechanism 𝐴 provides 𝜖-differential privacy if for any two input videos 𝑉 and 𝑉′ that differ 
in any visual element γ (e.g., object or human), and for any output O ∈ 𝑟𝑎𝑛𝑔𝑒 𝐴 , we have

𝑒!" ≤
Pr 𝐴 𝑉 = 𝑂
Pr 𝐴 𝑉′ = 𝑂

≤ 𝑒"

Query

Query

PETS’20
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VideoDP Framework

Video QueriesVideo Pre-processing Utility-driven Private Video

• Detecting and tracking all objects (assign an ID for every object in all the frames)
• Generating utility-driven private video:

Ø Sampling pixels for the video with differential privacy
Ø Interpolating unsampled pixels (post-processing DP results)

• Privately querying the randomly generated video (e.g., traffic monitoring, and street 
surveillance): post-processing DP results

PETS’20
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Phase I: Pixel Sampling

1. All the RGBs 𝜃!, 𝑟 ∈ [1, n] follow sequential composition in the sampling process and 
satisfy

Impractical to allocate privacy budget for 
every RGB (n can be as large as 2563) –
negligible budgets

2. Pixels are categorized into Case (1), (2), (3) with their RGBs

• Case (1): the RGBs in any visual element but not the background
• Case (2): the RGBs in the background but not any of the visual element
• Case (3): the RGBs in the background and at least one visual element

3. Case (3): assign privacy budgets to a subset of RGBs and derive sampled pixel counts 
for them for satisfying differential privacy

4. For each RGB, randomly sample pixels with DP to generate a raw output video (with 
sparse pixels) 

𝑛

PETS’20
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Phase I: Budget Allocation 

1. Derive the optimal k RGBs in each visual element (maximizing utility)
2. Partition the visual element into k multi-scales and choose the top frequent RGB in 

each scale
3. The criteria for allocating budget:

– Privacy budgets based on the count distributions of RGBs in different VEs 
– Fully utilizing the privacy budget 𝜖

Allocating all the 
privacy budgets

Not exceeding the privacy bound

PETS’20
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Phase I: Counts Computation

Sampling 
Pixels for 
Each RGB
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Phase II: Pixel Interpolation

• Post-processing the raw output video (sampled with DP)
Ø All pixels in Case (1) (pixels with a unique RGB) are suppressed
Ø All pixels in Case (2) (pixels in the background) are retained

Ø Pixels in Case (3) are partially sampled 
Ø Estimating the RGBs for missing pixels (suppressed or unsampled) using Bilinear 

interpolation

PETS’20
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Experimental Datasets

Multiple Object Tracking (MOT) dataset with pedestrians and vehicles
UCSD Anomaly Detection (UAD) dataset with crowded pedestrians
Boxy Vehicle Detection (BVD) dataset with crowded vehicles

MOT16-04 UADTest-001 BVD-Highway

PETS’20
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Evaluations

• RGB Count Distribution
Ø KL-divergence measures the count distribution difference of the RGBs in the input and private 

videos

• RGB Values at Pixel Level
Ø Mean square error (MSE) measures the difference between all the RGB values in the input and

private videos

• Detection and Tracking Accuracy in the Private Video
Ø Precision and Recall in the entire video
Ø VE detection accuracy in each frame

• Case study with specific queries in applications
Ø Small sensitivity and large sensitivity
Ø Benchmarking with the PINQ platform

PETS’20
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Pixel-Level and Detection/Tracking Utility

• KL-divergence and MSE • Detection and Tracking 
(VE counts precision and recall)

PETS’20
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Detection and Tracking (vs. PINQ and Black)
PETS’20



15

Case Studies

• VE Density (Small Sensitivity) • Pedestrian Stay Time (Large Sensitivity)

PETS’20
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Case Studies (Cont’d)

• Vehicle Stay Time (Large Sensitivity)

PETS’20
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Representative Frames
PETS’20



Thank You! 
Questions?
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Yuan Hong
Email: yuan.hong@iit.edu

Webpage: http://cs.iit.edu/~yhong/
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