
 Deploying Secure Computation
Protocols in Daily Business Applications

 Moti Yung
 Google/ Columbia U.

work done with the privacy
team @

Agenda

● Background: Secure Computation: theory &
practice (specific subject for general audience)

● Meta level experience: Deployment vs. research in
cryptography (general issue)

● An actual experience: The Private Data Exchange
(specific technical theme)

● ...Extensions….
● Conclusions

Secure Computing Protocols-- involved research area

● Started late 70’s (as an outcome of Public Key Crypto
just developed circa 76-77)...

● Many interesting basic fundamental ideas (surprising &
mathematically involved; viewed essentially as part of
THEORY of Computing)

● Great many researchers initiated its efforts! Many
continue nowadays; very active area; nowadays
experimentations, trials, initial attempts at actual
systems are even taking place!

Secure Computation Protocols: “the Opening Lineup”

● A. Shamir, R. Rivest, and L. Adleman, "Mental Poker", MIT TR
1979. (40+ years ago)

● S. Goldwasser, and S. Micali. Probabilistic encryption & how to
play mental poker keeping secret all partial information. STOC
82.

● Michael O. Rabin. "How to exchange secrets by oblivious
transfer.” Harvard TR 81.

● Manuel Blum, Coin Flipping by Telephone. CRYPTO’81
● Andrew C. Yao. Protocols for Secure Computations, STOC 82.

RECREATIONAL PROBLEMS?? Well….. Look at this:

Secure Computation Protocols: the Opening Lineup

● A. Shamir, R. Rivest, and L. Adleman, "Mental Poker", MIT TR
1979. (Turing Award 2002)

● S. Goldwasser, and S. Micali. Probabilistic encryption & how to
play mental poker keeping secret all partial information. STOC
82. (Turing Award 2012)

● Michael O. Rabin. "How to exchange secrets by oblivious
transfer.” Harvard TR 81. (Turing Award 1976)

● Manuel Blum, Coin Flipping by Telephone. CRYPTO’81
(Turing Award 1995)

● Andrew C. Yao. Protocols for Secure Computations, STOC 82.
(Turing Award 2000)

What is new in this set of applications?

● Traditional cryptography: a channel between two
parties. Adversary is an outsider!!

● Secure computing: Adversary is controlling
insiders. No need to assume external
eavesdropper/ disruptor/ etc.
○ A talk to B and they are mutually distrusted
○ In some way this abstracts “privacy concerns:”

(the adversary is internal to the system and
mutual protection against insiders needed).

Development in general for the last ~40 years

● Theory: General Protocol many many results...
● General Secure Computing: Two party can compute any

function without learning the other party’s input (Yao 86)
● Multi Party computations: Compute any function with secret

inputs, various settings, e.g., w/honest majority/ ⅔ majority
malicious failures (GMW 86, GHY87, BGW, CCD, R89...,)

● Modeling cryptographic functionalities, composability in
protocols, adversary models (malicious, game theoretic,..).

● Partial Information Games (private inputs).

Development in general: specific protocols
● Theory of Special protocols: Many interesting results

regarding specific protocols of high interest:
○ Election/ Voting protocols,
○ Payments (e-cash, cryptocurrencies: bitcoin),
○ Auctions, etc. (general computation results are

typically inefficient)

○ Big Data→ Privacy Preserving Communication/
Credentials (Chaum); Data Mining as an application
(Lindell Pinkas).

Recent Positive Developments: Applied Sec. Comp.
● Practice: More Emphasize of communication and running

time optimizations/ benchmarking (Usenix/ CCS/ S&P having
works on implementation reports of optimized protocols!!!).

● :-) Some demos that distributed is useful: In use, simple
comm. systems employing crypto, for some computations,
special protocols:
○ Helios election, etc.;
○ Bitcoin (public repository/ agreement) 2009;
○ Threshold Cryptosystems: secure distributed RSA signing

by CertCo in 97……..
○ Auctions based on secure computing...

Recent Positive Developments: Applied Sec. Comp. II
● :-) Initial MPC protocol for use: a protocol for auctions for

Danish Farmers bidding (2009), the first showing multi-party
approach is doable in dedicated application (share inputs
computes on linear secret sharing).

● other apps: Estonia: tax checking (in progress).... Etc. etc.:-)
● A few startups in the area of secure computations (e.g. for

key management, for ML, etc.)!!!
These are all dedicated applications, to show to business people
that it may work.
BUT: what is the killer application in established business! :-(
(I am a cryptographer in Industry, working also on secure
computing for >30 years………..)!!

What would be considered a business deployment
of secure computing technology?

 Survey of Cryptographers:
● One cryptographer: A business application which runs

routinely!
● Second cryptographer: High impact business application!
● Third cryptographer: When I suggest such protocols, I am

told no engineering team in the company will be able to
implement them! So, I concluded it is good theory, too hard
to spend time on commercializing this!

All I said, there is a lot of activity to build libraries/ demos/ etc.
and very specialized designs

Special applications are a good start. But, what about in an
established business?

● SINCE: Theory + experiments + demo: Together solve
about 10% of the ``actual deployment puzzle’’ of any
reasonably complex problem in an established company!!

Core Business Deployment:

Business…., how to start?
• Need incentives/ clear benefits.
• The need for crypto may come from different reasons.
• Needed: Awareness/ knowledge of the business issues/

engineering/ product plans/ software development plan:
→ Need to play ``Product manager’’ role

• Propose solutions: what actual problem it solves (and why
it is uniquely positioned-- i.e. no alternatives).

• Needed: Where and how to use the opportunity in the
overall product context (as enabler/ preventer)?

• → Start with the real problems/ issues! (Problem Solving)

REVISIT: Three Generation of Open Modern
Cryptographic Technology

- 1. Symmetric Cryptography: DES 73 (standard 77):
Main driver inter banking communications

- 2. Public key cryptography [DH, RSA] 76, 77: Main
use distributed systems, Internet SSL/TLS.

- 3. Secure computation Protocols 78,79:...... ????

Use of the first two generation
No alternative as communication in computer
networks (Decnet, IBM’s SNA,..Internet, Storage):

banks are distributed, Internet, Mobile networks,
Cloud Hosting, Infrastructures,..

…… for secure computing

Different situation….

alternatives…..

Third Generation: how to approach deployment?
● Till recently it was not considered needed in business…...
● No one even tried commercially………...BUT:

● When I joined Google I realized: Internet collaborative business
+ Cloud platforms/ hosting services + (now: mobile + IoT +
big-data collaborations in analytics/ learning/...) → This is
needed! Need first use! (Hence: also the startups!)

● Google is an engineering org; start with applications; build on it
(rather than build on pure long research projects).

Initial Exploration- decide where to deploy:
Innovation as a Social/ tactical choice

● Offline Computation can tolerate computation
delays, etc.

● Essential: critical to the company(!!!!)
● Involves data from different companies/ sources
● Have concrete privacy and sharing restrictions

(user privacy regulations, trade secrets, etc.)
● Alternatives are all bad and will be rejected (by at

least one of the parties: trust model insufficient:
e.g., violation of regulations, etc.)

Secure Computing: In General
Why Now?

● (2012) Internet e-business: a multi
company cooperation

● Cloud: data hosted outside (for users,
mobile).

● Privacy is demanded in user data handling
All the above under increased privacy
constraints! Alternatives less attractive!

Private Data Exchange

Concrete system System
● Content Provider G: Viewing users list
● Transaction Provider (Merchant) M: Spend values

by users list [i.e., who paid how much]
● Goal:

○ Discover spend value for a set of users of G per merchant,
to assess the correlation of viewing vs. spending (compute:
number of spenders; total spend value, [and leak upper
bound on user lists’ sizes]).

○ Raw Data can’t be exchanged → Private Data Exchange

Goal:
Find under constraints:
 (1) sum of spend values for common ids.
 (2) #common ids, (allow learning “some side info”
like upper bounds on the sizes of lists to boost
performance, as below:).
While:
 (& 3) Performance wise: Minimizing Communication
(big data)!! And performing reasonable computation
(avoid excessive processing)

Goal: discovering spend- no privacy
G M

G is set of Ids {G1, G2, …}
of viewers

M is Ids {M1, M2, …} at merchant.

S is set of spend values. Merchant
holds: (M1, S1), (M2, S2),
 . . .

1. (M1, S1), (M2, S2), ...

2. Sum the spends for all Ids in
common.

● Problem (!!!!!!!):
○ reveals to G all users
○ reveals to G all users and their spending.

Goal:
Constrained Learning/ Output
 Achieving PRIVACY under Cryptographic hiding:
● M finds NOTHING about:

○ ids of G
○ sum of spend values by viewing users

● G finds ONLY AGGREGATE INFO:
○ size of set of users in common
○ total spent values.

Privacy: Each side’s privacy merely based on its own actions
and practices for the duration of the protocol

Toward soln: Only protect spend values

G M
1. (M1, E(S1)), (M2, E(S2)), ...

2. Find common ids and their encrypted
spends E(Si) … E(Sj)

E: homomorphic encryption (paillier) of M. E(S1) x E(S2) → E(S1 + S2)

. 3. E=E(Si) x E(Si+1)..x E(Sj)

4. S=Si + Si+1 + Sj after homomorphic decryption

*** PROBLEM: Reveals total spend to M

Pailler 1999:
Security is based on factoring (the
composite residuosity assumption)
known to be broken only by factoring
(like the RSA function).

2nd step: ...also protect total spend

G M (owns E)
1. (M1, E(S1)), (M2, E(S2)), ...

2. Find common ids and their encrypted
spends E(Si) … E(Sj)

Use Blinding: Blind Sum Protocol-- homomorphic encr.
under merchant key

3. E= E(R) x E(Si) x E(Si+1) … x E(Sj)

4. S= R + Si + Si+1 + Sj after homomorphic decryption

5. subtract R to get total spend (and nothing more!)

Problem: reveals M’s IDs
● So far reveals all M’s IDs to G

○ too much leakage….
○ also reveals that users spent (even if not the amount).

● Can we avoid revealing the IDs?
● Yes → (blinded) private set intersection (PSI).

Note: PSI (very current and well studied problem)
is a tool for the private data exchange..

Abstractly: Trusted set intersector

G M
Trusted Set
Intersector

3. Find {i...j}
intersection of
G and M.

1. G: {G1, G2, ...}

2. (M1, E(S1)), (M2, E(S2)),...

 5. E= E(r) x E(Si) x E(Si+1) x … x E(Sj)

 4. E(Si) … E(Sj)

 6. S= r + Si + Si+1 + Sj after homomorphic decryption of E

Removing trusted 3rd party
● Trusted 3rd party → based on privacy

preserving blinded set intersection (PSI)..
● Numerous methods and extensive research to

get PSI
● Use commutative block encryption hiding ID’s:

○ f, g: commutative encryption
○ f(g(m)) equals g(f(m)).

● Combine with Blind Sum.

 commutative encryption
● [Pohlig Hellman 76]
 symmetric encryption f(m) = me1 mod p .
● g(m) = me2 mod p. [exponentiation cipher]
● fg(m) is me1e2 mod p and gf(m) = me2e1 = me1e2 mod p

○ Order of exponentiation not important! [Shamir 80]
○ Can do over elliptic curve groups too (smaller)
○ Can be viewed as “commutative joint hash”

Pohlig Hellman Security
 Over DDH groups (late 90’s idea) if we have random r
and its encryption: and then, given:
(1) encryption of random m or (2) random z; we cannot
tell
 < r, re1 , m, me1 >
< r, re1 , m, z >

We will ROM-hash the ID’s: ID → SHA256(ID), to get a
“random generator m” in the DDH assumption, the
transformation is a PR family (per each exponent)...

Privacy preserving set intersection
G M

 1. g(G1) ... g(Gn)

 2. fg(G1) … fg(Gn) in random order; f(M1) … f(Mm)

g:commutative
encryptor

 3. apply g: (fg(M1) … fg(Mm) =) gf(M1) … gf(Mm)

f: commutative
encryptor

 4. Find (due to random order) “blinded intersection elements” by finding
matches between fg(Gi) and gf(Mj) (finds size also)

2-birds: if step 2 returned in order→ set intersection

2. fg(G1) … fg(Gn) perm., (f(M1), E(S1)) … (f(Mm), E(Sm))

G M 1. g(G1)...g(Gn)

 5. E= E(r) x E(Si) x E(Si+1) x … x E(Sj)

 6. S= r + Si + Si+1 + Sj after homomorphic decryption

g: commutative
block encryptor

f: commutative
block encryptor

 3. Encrypt with g: gf(M1) … gf(Mm)

 4. Find intersections {i..j} by finding matches gf(Gi) and fg(Mj).

5 & 6: Blinded Sum based on Pailller (additive homomorph.)

Complete solution: Int Cardinality-Sum

Talking with eng. and clients: ...more to solve...
 (1) Basic one: “common subset affine function”

 (2) Reverse (requirement: summing at merchant who will
allow to continue or not):
 - each spending individually blinded (kept w/ encrypted ID)
 - Merchants aggregate; G sends the relevant unblindings
Implication: first solution may not be enough- merchant side
legal constraints have implications (--> talk with engineers,
business people, clients).
-encrypt squares of spending w/Paillier can compute Standard
Deviation as well….

 Basic Solutions (honest parties)

Adding Solutions:
-Robustness: against malicious behavior
 In practice: malicious/benign q. is based on trust.
-New tools to do it; solve related problems...
-Other methods (pseudorandom functions, OT,
...very interesting [may need more convincing]..)
-Optimizations (including leakage of side info vs.
efficiency)

STATUS
-Implemented, in daily “big data” use
-First tries 2017. Open Sourced 2019
-Keys ephemeral, minimizing key storage req’s
- Security “tested”: “cousins” of DH (Pohlig-H)
and of RSA (Paillier) which secure the Internet!!
-Routine usage for these critical important
cases of data analysis, keeping all PI and PII
private. Adaptation to solve other issues

Publications 2020:
-- Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel,
Mariana Raykova, Shobhit Saxena, Karn Seth, David Shanahan,
Moti Yung:
On Deploying Secure Computing Commercially: Private
Intersection-Sum Protocols and their Business Applications.
ePrint 2019: 723 (2019) Euro S&P 2020

-- Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, Moti Yung:
Two-Sided Malicious Security for Private Intersection-Sum with
Cardinality. ePrint 2020: 385 (2020) Crypto 2020

Proprietary + ConfidentialProprietary + Confidential

OPEN SOURCED +BLOG: Private Join and Compute

[1] https://security.googleblog.com/2019/06/helping-organizations-do-more-without-collecting-more-data.html

Proprietary + ConfidentialProprietary + Confidential

Facebook Private Match + PS3I

[1] https://engineering.fb.com/open-source/private-matching/

Proprietary + ConfidentialProprietary + Confidential

● Honest-but-curious security Security against Malicious/Active adversaries

● Both sides should receive the output (!!!!) [single side protocols exist]

● Communication cost + Monetary cost are more important than end-to-end runtime

● Communication cost 4-5x greater than semi-honest protocol based on DDH

● Monetary cost ~25x greater than semi-honest protocol based on DDH

The Malicious Adversary Work (just sketch of it):

Proprietary + ConfidentialProprietary + Confidential

There are Efficient one-sided Malicious-secure PSI

Proprietary + ConfidentialProprietary + Confidential Use Distributed OPRF: as a PSI starting point

X = (x1, … , xm)

k2

{ Fk1,k2(xi) }i ∈ [m]
{ Fk1,k2(xi) }i ∈ [m]

(Malicious-Secure)

k1

Proprietary + ConfidentialProprietary + Confidential

to...Shuffled Distributed OPRF

X = (x1, … , xm)

k2

Shuffle({ Fk1,k2(xi) }i ∈ [m]

)

{ Fk1,k2(xi) }i ∈ [m]

k1

Proprietary + ConfidentialProprietary + Confidential

SDOPRFk1,k2(Y)

Malicious PSI-Cardinality (two directions)

X = (x1, … , xm)

k2

Y = (y1, … , yn)
SDOPRFk1,k2(X)

Count common values

k1

Proprietary + ConfidentialProprietary + Confidential

SDOPRFk1,k2(Y), HEncs1,s2(W)

Malicious PSI-Sum with Cardinality [add HE for sum]

X = (x1, … , xm) Y = (y1, … , yn)

W = (w1, … , wn)
SDOPRFk1,k2(X)

Both parties can
homomorphically add the
encryptions associated
with the values in
common HEncs1,s2(IntSum)

Interactively (and
provably) decrypt.

(Avoids a major headache)

k1 s1
k2 s2

Proprietary + ConfidentialProprietary + Confidential

● Extended Dodis-Yampolskiy PRF Fk1, k2(x) = g1/(k1 + k2 + x)

● Can be computed interactively (with ZK proofs) by

leveraging Camenisch-Shoup (CS) cryptosystem

● Many Efficient ZK proof of CS, ElGamal, and Strong RSA

as a bridge…. (all to do it efficiently)

● Replacing Sigma-proofs with customized ones

● Efficient Batching techniques: Damgard-Jurik; Batch

OPRF; ElGamal with same first random component!

What we used? (a lot of technicalities):

Proprietary + ConfidentialProprietary + Confidential

● We had an efficient Honest-but-Curious (a footprint)

● Keep the footprint but change the crypto: optimize performance

○ so that you can squeeze max performance out of it

○ (avoid standard ideas: ZK etc., customize for performance!)

METHODOLOGICALLY

To Summarize
● In Theoretical results: well stated problem (well

presented/ motivated/ previously unsolved) and
a new solution yielding: clever algebra,
amazing proof, fundamental techniques,
solution to an open question…. is great!!!

● Actual deployment requires: business needs,
navigating engineering alternatives, business
development, evangelizing, convincing,.. etc.

● Honest design to get “Private Computing”

 “practice” in practice!
● One needs to:

○ Insist on best privacy practices whenever possible…
get the best for business needs without violation of
individual data/ individual tracking whenever
possible…. →

○ The Secure Data Exchange is DECISIVELY on the side
of PRIVACY! →
■ Secure Computing between self-secured parties→

Maximizes Privacy and at the same time enables
only Needed Aggregated Utility

● THEN: Science will be needed anyway……..

Beyond the Secure Data Exchange
● Design for scale implies other uses, like

“Password check” can be built on it: user
checks her password is not in a bad password
list without revealing the password (and without
learning the list)...

● Other uses...

Crypto in Engineering- general conclusion
• There is no fixed recipe for it, just general principles;

Business adaptation is challenging; Adaptable efficient
methods a win!

• Needed: right interpretation of the theory!

• Attack models, risk management, incentives apply,
liabilities (i.e., legal issues) apply as well.

• Secure components (proofs/ theory) matter!

• The aesthetics is different than in theory: solving very
real critical valuable issue!

 FINAL THOUGHT: theory vs. practice →

 The Elegance of Theory

 “The elegance of a mathematical theorem is directly

proportional to the number of independent ideas one can

see in the theorem and inversely proportional to the effort it

takes to see them.”

― George Pólya, Mathematical Discovery on Understanding,

Learning, and Teaching Problem Solving, Volume I

 The Elegance of Practice

“If you are out to describe the truth, leave elegance to the
tailor.” ― Ludwig Boltzmann

In working on Actual Solutions

I say, from the perspective of Industrial Research:

“The Technical Problem Solving Process of Highly
Messy Real Business Situations/ Needs which seems
hopeless is, in fact, an interesting navigation
transforming “Hopelessness→ Solution,”.............
Hence, by definition: It Is Elegant”

THANKS!

