Security of 4G and 5G Cellular Networks

Elisa Bertino Purdue University

In collaboration with
Syed Rafiul Hussain*, Omar Chowdhury†, Shagufta Mehnaz*
Purdue University*, University of Iowa†

Adversary Model

- ☐ Dolev-Yao model
 - ➤ Eavesdrop
 - ➤ Drop or modify
 - ➤ Inject
 - > Adheres to cryptographic assumptions
- ☐ Why Dolev-Yao model?
 - ➤ Powerful adversary
 - > Automatic tools (ProVerif, Tamarin) can be leveraged

13

Insight

- ☐ Property characteristics
 - Temporal ordering of events
 - Cryptographic constructs
 - Linear integer arithmetic and other predicates
- ☐ Intuition:
 - ✓ Model checker
 - √ Cryptographic protocol verifier

temporal trace property & Linear integer arithmetic

Cryptographic Constructs

How can we leverage reasoning power of these two?

Testbed Validation

- ☐ Malicious eNodeB setup (USRP, OpenLTE, srsLTE)
- ☐ Malicious UE setup (USRP, srsUE)
- □ COTS smartphones
- ☐ SIM cards of four major US carriers
- ☐ Custom-built core network ☐ USRP, OpenLTE, srsLTE, and USIM

Findings

☐ Uncovered **10** new attacks

Attack	Procedures	Responsible	Notable Impacts
Auth Sync. Failure	Attach	3GPP	DoS
Traceability	Attach	carriers	Coarse-grained location tracking
Numb using auth_reject	Attach	3GPP, smartphones	DoS
Authentication relay	Attach	3GPP	Location spoofing
Paging Channel Hijacking	Paging	3GPP	DoS
Stealthy Kicking-off	Paging	3GPP	DoS, coarse-grained location tracking
Panic	Paging	3GPP	Artificial chaos for terrorist activity
Energy Depletion	Paging	3GPP	Battery depletion/DoS
Linkability	Paging	3GPP	Coarse-grained location tracking
Targeted/Non-targeted Detach	Detach	3GPP	DoS

☐ Uncovered **9** prior attacks: IMSI-catching, DoS, Linkability, MitM in 3G and 2G, etc. ²¹

Responsible Disclosure and Impacts

- ☐ Mobile network operators
- ☐ Resolved the issue of using **EEA0** (no encryption)
- ☐ Other issues are in progress

Future Work

- ☐ Use of LTEInspector to analyze implementations of 4G
- ☐ Analysis of 5G

Defenses – Initial Work

UE's Cell Selection and bootstrapping

- ☐ MIB broadcast every 40ms
- ☐ SIB broadcast every 80ms
- ☐ These messages are not digitally signed

Possible approaches

- ☐ Broadcast symmetric key authentication (3GPP suggests Tesla)
- ☐ <u>Asymmetric key authentication</u>

Requirements

- ☐ *Minimize signature size* critical to save bandwidth
- ☐ Minimize signature generation time critical because of MIB and SIB broadcast frequency
- ☐ Minimize signature verification time critical to reduce energy cost at the UE

· Elements of our solutions

- ☐ PKI-level optimization: *design of a lightweight certificate*
- $lue{}$ Protocol-level optimization: authentication only for SIB (and only for SIB1 and SIB2);

signature aggregation for SIB1 and SIB2

☐ Cryptographic scheme-level optimization: use of BGLS + Structure-free and Compact Real Time
Authentication (SCRA-BLGS)

Conclusion

Proposed a systematic approach for analyzing the specification

Uncovered 10 new attacks and 9 prior attacks

Validated most of the attacks in a testbed

https://github.com/relentless-warrior/LTEInspector

31

Questions

