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~16,000 ~11,000

Bugs found by Google ClusterFuzz as of January 2019

In 160+ open-source projects 
integrated with OSS-Fuzz



History of Fuzzing
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modem

Prof. Barton Miller (University of Wisconsin, Madison),  
“the father of fuzzing”, coined the term in 1988



How does Black-box Fuzzing work?
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System 
Under Test

Black-box 
Fuzzer

Monitor 
(e.g. Crash 
detection)

crash 
report

crash 
input+
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(i.e., seeds)

mutated inputs



Example
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Black-box 
Fuzzing

“good”

o!do
god!o
good
?oo?
cood!
b?od
gooooood
godnHggggggggggggg
ggggggggggggggggggggood
goad!
go-590ooooood
$ggofd
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buf[0]==‘b’

buf[1]==‘a’

buf[2]==‘d’

buf[3]==‘!’

CRASH

o!do
god!o
good
?oo?
cood!

b?od
gooooood
godnHggggggggggggg
ggggggggggggggggggggood
goad!
go-590ooooood
$ggofd

yes

yes

yes

yes

no

no

no

no

A deeper look



White-, Grey-box Fuzzing

•Generate an input & run the program
•Watch the program path traversed by the input
•Try never to repeat the path twice
•Monitor for abnormal behaviours (e.g., crashes)
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Coverage-based Grey-box Fuzzing
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System 
Under Test

Grey-box 
Fuzzer

Input corpus 
(i.e., seeds)

…

edge coverage 
bitmap

input queue

Mutated inputs



White-box Fuzzing 
(a.k.a concolic execution)
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Theorem 
Prover

Satisfiable 
(SAT)

Unsatisfiable 
(UNSAT)
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Directed Fuzzing Structure-aware 
Fuzzing

Stateful Fuzzing
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Directed Fuzzing Structure-aware 
Fuzzing

Stateful Fuzzing

(ICSE’15, CCS’17)
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Directed Fuzzing

Choose “directions” to manage the search space & 
discover paths which are more likely to trigger program 

bugs in shorter time 



Motivations for Directed Fuzzing

•Patch testing - continuous testing
•Crash reproduction
•Targeted vulnerability discovery
•Variant analysis
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Directed Search in White-box Fuzzing
For Crash Reproduction Problem
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Crash reproducing supports 
- In-house debugging and fixing 
- Vulnerability assessment



Overview
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Program binary

Benign input files

(Crash instruction, loaded 
modules, call stack, register 
values)

Crash-triggering 
files

Hercules 
Toolset



     3-stage workflow

•involving a set of techniques
•control flow graph extraction
•symbolic-execution based taint analysis
•graph prunning
• loop & string functions handling
•systematic guided backtracking
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Test Suite
Test Suite

Selected 
input files

push ebp
mov  ebp,esp
mov  edx,esi
push edi
mov  esi,[ebp+arg_0]
mov  edi,[ebp+arg_4]

Static and 
dynamic 
analyses

+
IDAPro

Binaries CFG and MDG

Symbolic file

Concolic
exploration

and 
precise taint

tracking

CFG and MDG 
(pruned)

File structure 
info

Hybrid symbolic file

Targeted
concolic

exploration

Crash-revealing input

Crash explanation

1 2 3

Crash 
Report

!



Graph prunning
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Summary: 
(x<0 ∧ y!=0)

Main module

module C

...

module B

φ_2φ_1

Crashing module

branch 
condition
CT: (x>0)

module A

PC: (x>0 ∧ y==7)

 (x:=-1)

!

T F

crash
location

pruned
path

pruned
path



UNSAT-core Guided Backtracking
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b1

b2 b3

b4

¬bc1

bc3

bc1

bc2

bc4¬bc4

¬bc3
¬bc2

x Crash Instruction

1st attempt: 
PC =  
CheckSAT(PC ^ CC) == UNSAT 
bc1 contradicts CC

bc1 ∧ ¬bc3 ∧ bc4
2nd attempt 
PC' =  
CheckSAT(PC’ ^ CC) == SAT 
Generate crashing input

¬bc1 ∧ bc2 ∧ bc41) Backtrack to b1 
2) Take another branch

minimal unsatisfiable core

(Crash condition: CC)



Results
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Program Advisory ID #Seed files Hercules Peach S2E

WMP 9.0 CVE-2014-2671 10

WMP 9.0 CVE-2010-0718 10

AR 9.2 CVE-2010-2204 10

RP 1.0 CVE-2010-3000 10

MP 0.35 CVE-2011-0502 10

OV 1.04 CVE-2010-0688 10

Hercules scales to large binary programs such as Adobe 
Reader and Windows Media Player and outperforms the 
baselines



Directed Greybox as Optimisation Problem
1. Instrumentation Time:


•Extract call graph (CG) and 

    control-flow graphs (CFGs).

•For each basic block (BB), compute 
distance to target locations.

• Instrument program to aggregate 
distance values.


2. Runtime, for each input

•collect coverage and distance 
information, and

•decide how long to be fuzzed 
based on distance using simulated 
annealing algorithm.
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b1

b2

b3

b4

b5

t1

t2

t3



Results
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Patch Testing: Reach changed statements

• State-of-the-art in patch testing


• KATCH (based on KLEE symbolic execution tool)


• Patch Coverage (#changed BBs reached)

• While we would expect KATCH to take a substantial lead,  

AFLGo outperforms KATCH in terms of patch coverage.

• BUT: Together they cover 42% and 26%  

more than KATCH and AFLGo individually.  
They complement each other! 

Project Tools diff, sdiff, diff3, cmp
Program Size 42,930 LoC

Chosen Commits 175 commits from Nov’09–May’12
GNU Di�utils

Project Tools
addr2line, ar, cxxfilt, elfedit, nm,
objcopy, objdump, ranlib, readelf
size, strings, strip

Program Size 68,830 LoC + 800kLoC from libraries
Chosen Commits 181 commits from Apr’11–Aug’12

GNU Binutils

Figure 8: Description of the K���� benchmark [21]

In this experiments, we compare our directed greybox fuzzer
AFLG� with K���� in terms of patch coverage and vulnerability
detection. We use the same subjects, experimental parameters, and
infrastructure as the authors of K����. However, we excluded the
smallest subject, �ndutils, because it has the capability to execute
arbitrary commands and delete arbitrary �les. AFLG� actually exe-
cutes the instrumented binary while K���� merely interprets the
LLVM Bytecode. Some descriptive statistics about the remaining
subjects are shown in Figure 8. The virtual infrastructure is pro-
vided on request by the authors of K����. We reuse the same scripts
in the infrastructure to determine target locations and to analyze
the results. We use the same seed corpus und set the same timeout
(i.e., 10 mins per target for Di�utils, 15 mins per target for Binutils).
Conservatively, we make only one virtual core and about 3GB of
main memory available to AFLG� while four cores and 16GB were
made available to K����.

However, we note that such tool comparisons should always
be taken with a grain of salt. An empirical evaluation is always
comparing only the implementations of two concepts rather than
the concepts themselves. Improving the e�ciency or extending the
search space may only be a question of “engineering e�ort” that
is unrelated to the concept [32]. We make a conscious e�ort to
explain the observed phenomena and distinguish conceptual from
technical origins. Moreover, we encourage the reader to consider
the perspective of a security researcher who is actually handling
these tools to establish whether there exists a vulnerability.

5.1 Patch Coverage
We begin by analyzing the patch coverage achieved by both K����
and AFLG� as measured by the number of previously uncovered
basic blocks that were changed in the respective patch.

Table 1: Patch coverage results showing the number of previ-
ously uncovered targets that K���� and AFLG� could cover
in the stipulated time budget, respectively.

#Changed #Uncovered
Basic Blocks Changed BBs K���� AFLG�

Binutils 852 702 135 159
Di�utils 166 108 63 64

Sum 1018 810 198 223

K���� — 59 139 84 — AFLG�

Figure 9: VennDiagram showing the number of changedBBs
that K���� and AFLG� cover individually and together.

AFLG� covers 13% more previously uncovered changed basic blocks
thanK����.AFLG� covers 223 of the previously uncovered changed
basic blocks while K���� covers 198. Column 2 of Table 1 shows the
total number of changed basic blocks while Column 3 shows those
that are not already covered by the existing regression test suite.
Finally, columns 4 and 5 show the number of previously uncovered
basic blocks that K���� and AFLG� covered, respectively. We call
previously uncovered changed basic blocks targets.

While we would expect K��� to take a substantial lead, AFLG�
actually outperforms K���� in terms of patch coverage on the
same benchmark that was published with the K���� paper.

We analyzed the reason why the remaining targets have not
been covered. Many were not covered due to limitations in our
current prototype that we share with K����. For instance, more
than half of the changed basic blocks are accessible only via register-
indirect calls or jumps (e.g., from function-pointers). Those do
not appear as edges in the analyzed call-graph or in the control-
�ow graph. Also, symbolic execution as well as greybox fuzzing is
bogged down by the large search space when the program requires
complex input structure. For example, many Binutils targets can be
executed only if the seed �le contains speci�c sections (e.g., sections
for certain architectures like ARM or MIPS), with an individually
de�ned structure. Both techniques would stand to bene�t from a
higher-quality regression test suite and from a model-based fuzzing
approach [28].

To understand how researchers can bene�t from both approaches,
we investigated the set of targets covered by both techniques. As
we can see in Figure 9, AFLG� can cover 84 targets that K����
cannot cover while K���� covers 59 targets that AFLG� cannot
cover. We attribute the reasonably small intersection to the indi-
vidual strengths of each technique. Symbolic execution can solve
di�cult constraints to enter “compartments” that would otherwise
be di�cult to access [38]. On the other hand, a greybox fuzzer can
quickly explore many paths towards the targets without getting
stuck in a particular “neighborhood” of paths.

AFLG� and K���� complement each other. Together they cover
282 targets, 42% and 26% more than K���� and AFLG� would
cover individually.
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Directed Fuzzing Structure-aware 
Fuzzing

Stateful Fuzzing

(ASE’16, TSE’19)
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PNG

CHUNK

CHUNKCHUNK

CHUNKlength type

Signature

CRCDATA

xxx yyy…

…

length of crc of

Data chunk

Data field

Integrity constraint

length type CRCDATA

zzz txt…
length of crc of



AFLSmart: Smart Greybox Fuzzing
•Design a high-level structural representation (virtual file 
structure) representing all chunk-based file formats

•Apply higher-order mutation operators that work at 
“chunks” level together with bit-/byte-level mutators

•Prioritise semantically valid seeds. (i.e., 100% valid means 
the whole seed can be successfully parsed by the parser)
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Architecture of AFLSmart

•File Cracker: transforms seeds (e.g., PNG fi les) to a 
tree-based structure, given an input model

•Energy Calculator: spends more time to fuzz more 
valid inputs 
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Sample input model of PNG image file
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Architecture of AFLSmart

•File Cracker: transforms seeds (e.g., PNG fi les) to a 
tree-based structure, given an input model

•Energy Calculator: spends more time to fuzz more 
valid inputs 
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Results
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AFLSmart vs Vuzzer 
on Vuzzer’s benchmark

42 zero-day bugs found 
23 CVEs assigned
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Google OSS-Fuzz 
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Directed Fuzzing Structure-aware 
Fuzzing

Stateful Fuzzing

(ICST’20)



Stateful Greybox Fuzzing: Motivation

•Stateless
• Program behaviour 
only depends on the 
current input

• e.g., file processing 
programs

•Stateful
• Program behaviour 
depends on the current 
input & current program 
state

31



Example - FTP protocol
220 FTP Server ready

USER foo

331 User foo OK. Password required

PASS foo

230 User logged in, proceed.

MKD demo

257 Directory created.

CWD demo

250 Requested file action okay, completed.

STOR test.txt

150 File status okay

226 Transfer complete

QUIT

221 Goodbye!
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220

331

230 257 250

150226221

User foo

PASS foo

MKD de
mo

CW
D de

mo

STOR test.txt

QUIT

A sample FTP session to upload a file (test.txt)  
to a new folder (demo) on the server



Key challenge in testing stateful servers
Stateful servers only accept sequences of (valid) messages in 
(valid) orders

• We need a state machine representing the implemented protocol 
to guide the test generation process
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Q2. How to construct the state machine?

Q3. How to effectively explore the state machine?

Q1. How to know the current server state?
Use the server response code (e.g., 230 - user logged in) 



Q2. How to construct the state machine
•Time consuming
•Require domain knowledge
• Implemented protocol 
could be different from the 
standard specification
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,1,7

5($'<

3/$<

6(783�UHTXHVW 3/$<�UHTXHVW

7($5'2:1�
UHTXHVW

7($5'2:1

6(783�ZLWK�D�³UDQJH´�SDUDPHWHU

3/$<�UHTXHVW2WKHU�UHTXHVWV

6(783�UHTXHVW

Manual & static approach

•Not time consuming
•Capture the exact 
implemented protocol

Automatic & dynamic approach



Q3. How to explore the state machine
•Prioritise “progressive” states that contribute more 
towards increased code coverage than others. 
• Step-1: Select a target state
• Step-2: “Replay” to reach a selected progressive state
• Step-3: Mutate the message(s) consumed by the server at 
that state
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86(5�IRR 3$66�IRR 0.'�GHPR 48,7

�������� ������������� ������������������ ����������«�����

���
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86(5�IRR 3$66�IRR 0.'�GHPR 48,7

�������� ������������� ������������������ ����������«�����

���

Original message sequence (i.e., seed input)

86(5�IRR 3$66�EDU 0.'�GHPR 48,7

�������� ������������� ������������� ����������«�����

���

And then, state 331 (User OK) is targeted

��� ��� ��� ������ ��� ��� ���

��� 1RW�ORJJHG�LQ

3$66�EDU
48,7

inferred state machine



Architecture of AFLNet
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���
6� 6Q
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UHVSRQVHV
�H�J���³����2.´��
³����(55´�

0HVVDJH�3RRO

•Input: captured network traffic in .pcap files
•Output:

• Implemented state machine
•bug-triggering inputs



Results
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AFLNet outperforms BooFuzz and AFL
2 critical zero-day vulnerabilities found (CVE score 9.8)



Extensions

•Make state machine learning more fine grained
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•Make AFLNet work for IoT/Industrial network protocols 
(e.g., CAN bus, TLS/DTLS protocols)

A joint project with
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Directed Fuzzing Structure-aware 
Fuzzing

Stateful Fuzzing
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Shonan Meeting 160 (Japan) 
Fuzzing & Symbolic Execution



Collaborative Fuzzing
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static analyzer

developer/security expert Parallel Fuzzing



Secure Software Development with Fuzzing
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In a continuous integration (CI) setup

CI serverrepository

Security expert

Developer
1) Commit code changes

2) Commit fuzz target(s) 
(a.k.a test driver(s))

3) pull for fuzzing

Fuzzing nodes



Problems in this setup
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•Shortage of security experts
•Delays caused by the communication between 
developers & the security experts

•Security expert are not familiar with the code to be 
fuzzed



Secure Software Development with Fuzzing
At Google
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Security expert. Creator of AddressSanitizer,  
MemorySanitizer, ThreadSanitizer, and libFuzzer

“Fuzzing is widely used at Google because code owners are writing 
their own fuzz targets, as opposed to security experts trying to 
find bugs in code they aren't familiar with.” @Shonan meeting on Fuzzing and 
Symbolic execution (Sept 24-27, 2019, Tokyo, Japan)

Kostya Serebryany
@kayseesee



Secure Software Development with Fuzzing
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In a continuous integration (CI) setup

CI serverrepository

Developer

1) Commit code changes
2) Commit fuzz target(s) 

(a.k.a test driver(s))

3) pull for fuzzing

Fuzzing nodes

Security expert



Collaborative Directed Fuzzing
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Code 
Database

Developer Security expert

static 
analyzer

dynamically 
directed 

fuzzer

-Code Database as shared knowledge with a unified queryable 
interface (e.g., Github CodeQL) 

-Directed Fuzzer accepts dynamic guidance & learn to 
gradually become self-guided
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