Secure Software Development

with Continuous & Collaborative
Fuzzing

Thuan Pham

Research Fellow

MONASH University

Bugs found by Google ClusterFuzz as of January 2019

~16,000 ~11,000

In 160+ open-source projects
integrated with 0SS-Fuzz

History of Fuzzing

Prof. Barton Miller (University of Wisconsin, Madison),
“the father of fuzzing”, coined the term in 1988

How does Black-box Fuzzing work?

Input corpus
(i.e., seeds)

mutated inputs

Black-box System
Fuzzer > Under Test

Document

Monitor
(e.g. Crash
detection)

crash
report

Example “good”
void Fn(char buf[4])
{ Black-box
if (buf[0] == 'b') { Fuzzing
if (buf[1] == 'a') {
if (buf[2] == 'd') {
if (buf[3] == "!") {
CRASH(); o'do
¥ god!o
} good
} 200?
} cood!
} b?o0d
2000000d
godnHgggggggegggas
ggeeeeegeseoseoossoood
goad!
20-590000000d
$ggofd

A deeper look

b“f[O] — =‘b’

yes
@

yes

yes ‘

yes '

CRASH

o!do
god!o
good
200?
cood!

b?0d

2000000d

godnHgggggggogosoo

g2geeeeeeeosasossaooood
goad!

20-590000000d
$ggofd

-__
White-, Grey-box Fuzzing

*Generate an input & run the program
* Watch the program path traversed by the input
* Try never to repeat the path twice

*Monitor for abnormal behaviours (e.g., crashes)

Coverage-based Grey-box FUuzzing edge coverage
bitmap

Mutated inputs

Input corpus

(i.e., seeds) — ?
" 7 Grey-box System
k Fuzzer Under Test

input queue

-__
White-box Fuzzing
(a.k.a concolic execution)

Fn(buff[] = “good”)

Path constraint - _ _ _ buf[0] I= ‘b’
l ™ buf[0] == b’
Theorem bufl0] == b’ &8 ()
Prover buf[1] == ‘@’ buf[0] == ‘b’ &&
buf[1] I= ‘@’
buf[0] == ‘b’ && (@
Satisfiable Unsatisfiable buf[1] == ‘a: &&
(SAT) (UNSAT) buf[2] =='d buf[0] == ‘b’ &&
buf(1] == ‘a’ &&
() buf[2] != ‘d’
buf[0] == b’ && buf[0] == ‘b’ &&
buf[1] == "a’ && buf[1] == ‘a’ &&
bUf[Z] =="'d’ && buf[2] ==‘d’ && @
Buff3] == Buf3] ="

©

Directed Fuzzing Structure-aware Stateful Fuzzing
Fuzzing

Directed Fuzzing Structure-aware Stateful Fuzzing
Fuzzing

(ICSE’15, CCS’17)

Directed Fuzzing

Choose “directions” to manage the search space &
discover paths which are more likely to trigger program
bugs in shorter time

-__
Motivations for Directed Fuzzing

*Patch testing - continuous testing
*Crash reproduction
* Targeted vulnerability discovery

*Variant analysis

Directed Search in White-box Fuzzing
For Crash Reproduction Problem

Adobe Reader 9.2

Adobe Reader 9.2 has encountered a problem and needs
to close. We are sorny for the inconvenience. —

If you were in the middle of something, the information you were working on
might be lost.

Please tell Microsoft about this problem.

We have created an eror report that you can send to us. We will treat
this report as confidential and anonymous.

To see what data this error report contains, click here.

Send Error Report Don't Send CI'CISh reprOdUCing SUppOI‘i’S
- In-house debugging and fixing
- Vulnerability assessment

Overview

Program binary

REPORT B

=)

Crash-triggering
files

(Crash instruction, loaded
modules, call stack, register
values)

Benign input files

3-stage workflow

CFG and MDG Crash explanati
Binaries CFG and MDG rash explanation
Static and Concolic A
dynamic |:> |:> exploration Targeted S
analyses Q‘ ¢ [;l and concolic ¥
+ precise taint exploration
IDAPro ﬁ = tracking E—
Symbolic file ’_» Crash-revealing input

®

info

*involving a set of techniques
* control flow graph extraction
*symbolic-execution based taint analysis
*graph prunning
*loop & string functions handling

*systematic guided backtracking

Graph prunning Main module

— //\
) ? branch \

condition

CT: (x>0)
% T F module B \

pruned
path

LN
PC: (x>0 A y==7)

pruned
path

Crashing module location

UNSAT-core Gulded Backtrackmg

minimal unsatisfiable core

X Crash Instruction
(Crash condition: CC)

' 1st attempt: ' 2"°I attempt

'PC =bcl A=bc3 A bed 1) Backtrack to b1 'PC' = =bcl A be2 A bed
'CheckSAT(PC A CC) == UNSAT :_> 2) Take another branch =, CheckSAT(PC’ A CC) == SAT |
y bc1 contradicts CC . Generate crashing input .

Results
Program Advisory ID #Seed files Hercules Peach S2E
WMP 9.0 CVE-2014-2671 10 ¥ X X
WMP 9.0 CVE-2010-0718 10 ' X X
AR 9.2 CVE-2010-2204 10 W X X
RP1.0 CVE-2010-3000 10 v > ¢ X
MP 0.35 CVE-2011-0502 10 WV v v
OV 1.04 CVE-2010-0688 10 W v X

— ——r - - . —— = I P— ——

Hercules scales to large binary programs sch s Ade
'Reader and Windows Media Player and outperforms the

m baselines

I _ _ _ - —— I —— —_

Directed Greybox as Optimisation Problem

1. Instrumentation Time: t1
Extract call graph (CG) and ’ b1
control-flow graphs (CFGs). V\ b2
For each basic block (BB), compute
distance to target locations. b3

*Instrument program to aggregate
distance values.

2. Runtime, for each input b5
- collect coverage and distance

iInformation, and

-decide how long to be fuzzed
based on distance using simulated
annealing algorithm.

Results

Patch Testing: Reach changed statements
e State-of-the-art in patch testing
* KATCH (based on KLEE symbolic execution tool)

e Patch Coverage (#changed BBs reached)

 While we would expect KATCH to take a substantial lead,
AFLGo outperforms KATCH in terms of patch coverage.

* BUT: Together they cover 42% and 26%
more than KATCH and AFLGo individually.
They complement each other!

KaTcH AFLGo

Directed Fuzzing Structure-aware Stateful Fuzzing
Fuzzing

(ASE’16, TSE’19)

C) Data chunk

Data field

Signature (CHUNK)

- =9 Integrity constraint

length QDATA (CHUNK)
length of “~«.___. .? ®__."crc of / \

length type DATA CRC
‘~ y;
length of “~~«____. 2 ®__."crcof

ZZZ | eee | Xt

AFLSmart: Smart Greybox Fuzzing

*Design a high-level structural representation (virtual file
structure) representing all chunk-based file formats

parent

@

Chunk Attribute
start_index —t start_index
end_index end_index

type

* Apply higher-order mutation operators that work at
“chunks” level together with bit-/byte-level mutators

*Prioritise semantically valid seeds. (i.e., |00% valid means
the whole seed can be successfully parsed by the parser)

Architecture of AFLSmart

rspecification

| /f:\ ¥

[AFLSmart 0[Structure }4— Validity (%) 4_[File }

_ [Seed Selector] <

Fuzzer Collector Cracker

— —A ‘ \ A
AFLSmart
[Energy Calculator }

chunk1 chunk2 ‘

o) [ANIAN

Input Queue

*File Cracker: transforms seeds (e.g., PNG files) to a
tree-based structure, given an input model

*Energy Calculator: spends more time to fuzz more
valid inputs

———
Sample input model of PNG image file

()
<DataModel name="Chunk">

<String name="ckID" length="4"/>
<Number name="cksize" size="32" >
<Relation type="size" of="Data"/>
</Number>
<Blob name="Data"/>
<Padding alignment="16"/>
</DataModel>
<DataModel name="ChunkFmt" ref="Chunk">
<String name="ckID" value="fmt "/>
<Block name="Data">
<Number name="wFormatTag" size="16"/>
<Number name="nChannels" size="16"/>
<Number name="nSampleRate" size="32"/>
<Number name="nAvgBytesPerSec" size="32"/>
<Number name="nBlockAlign" size="16" />
<Number name="nBitsPerSample" size="16"/>
</Block>
</DataModel>

<DataModel name="Wav" ref="Chunk">
<String name="ckID" value="RIFF"/>
<String name="WAVE" value="WAVE"/>
<Choice name="Chunks" maxOccurs="30000">
<Block name="FmtChunk" ref="ChunkFmt"/>

<Block name="DataChunk" ref="ChunkData"/>
</Choice>

</DataModel>
_ Y,

Architecture of AFLSmart

rspecification

| /f:\ ¥

[AFLSmart 0[Structure }4— Validity (%) 4_[File }

_ [Seed Selector] <

Fuzzer Collector Cracker

— —A ‘ \ A
AFLSmart
[Energy Calculator }

chunk1 chunk2 ‘

o) [ANIAN

Input Queue

*File Cracker: transforms seeds (e.g., PNG files) to a
tree-based structure, given an input model

*Energy Calculator: spends more time to fuzz more
valid inputs

Results

Subject Bug-ID AFL AFLFAST Peach AFLSMART
WavPack CVE-2018-10536 X X X 20/20
CVE-2018-10537 X X X 12/20
CVE-2018-10538 X X X 20/20
CVE-2018-10539 X X X 15/20
CVE-2018-10540 10/20 15/20 11/20 12/20
Binutils Bugzilla-23062 10/20 11/20 X 11/20 VUZZER AFLSMART
Bugzilla-23063 13/20 12/20 X 10/20
CVE-2018-10372 16/20 18/20 X 16/20
CVE-2018-10373 11/20 12/20 X 14/20
Bugzilla-23177 X X X 13/20
LibPNG CVE-2018-13785 X X X 6/20
Libjasper Issue-174 8/20 9/20 X 9/20
PP o175 12/20 14/20 X 12/20 AFLSmart vs Vuzzer
CVE-2018-19539 X X X 15/20 ’
CVE-2015-1920 % % % %0 on Vuzzer’s benchmark
CVE-2018-19541 X X X 6/20
CVE-2018-19542 X 7/20 X 9/20
CVE-2018-19543 8/20 12/20 X 13/20
Issue-182-6 19/20 20/20 X 18/20
Issue-182-7 16/20 18/20 X 19/20
Issue-182-8 12/20 13/20 X 16/20
Issue-182-9 12/20 14/20 X 11/20
Issue-182-10 14/20 11/20 X 15/20
OpenJPEG Email-Report-1 X X X 8/20
Email-Report-2 X X X 13/20
Issue-1125 X X X 15/20
LibAV Bugzilla-1121 X X X 5/20
Bugzilla-1122 X X X 6/20
Bugzilla-1123 18/20 18/20 X 18/20
Bugzilla-1124 15/20 18/20 X 16/20
Bugzilla-1125 X X X 8/20
Bugzilla-l 127 13/20 15/20 X 18/20
FFmpeg Email-Report-3 X X X 3/20

[] aflsmart / aflsmart ® Unwatch~ = 42 317 § YFork 61

<> Code Issues 4 Pull requests 0 Actions Projects 0 Wiki Security Insights

Smart Greybox Fuzzing (https://thuanpv.github.io/publications/TSE19_aflsmart.pdf)

D 247 commits ¥ 1branch ™ 0 packages © O releases 22 9 contributors

Hot fuzz: Bug detectives whip up smarter version of classic ...
https://www.theregister.co.uk » 2018/11/28 » better_fuzzer_aflsmart v

Nov 28, 2018 - Known as AFLSmart, this fuzzing software is built on the powerful American ...
We're told AFLSmart is pretty good at testing applications for common The Register -
Independent news and views for the tech community.

AFLSmart | Latest AFLSmart News, Articles and Updates

https://cyware.com > tags » aflsmart v

AFLSmart - Check out latest news and articles about AFLSmart on Cyware.com. We provide
Google 0SS-Fuzz

machine learning based curation engine brings you the top and ...

Researchers Introduce Smart Greybox Fuzzing | SecurityWeek ...
https://www.securityweek.com » researchers-introduce-smart-greybox-fuzz... v
Nov 29, 2018 - Information Security News, IT Security News and Cybersecurity Insights: ...
According to the experts, AFLsmart is highly efficient in analyzing ...

Directed Fuzzing Structure-aware Stateful Fuzzing
Fuzzing

(1CST’20)

-__
Stateful Greybox Fuzzing: Motivation

eStateless “One of the things that I struggle with is the limitation AFL

. seems to have, in that it only performs fuzzing with one

° PFOgFam behaviour input (a file). For many systems such as network protocols,

only depends on the it wfould be u..seful if fuzzing c.ould be ’done on a sequence

) of inputs. This sequence of inputs might be for example

current input messages necessary to complete a handshake in TLS/TCP.”
ce.g, file processing | — Paul (a member of the AFL’s user group) [8]]

programs “I’m interested in doing something fairly non-traditional

and definitely not currently supported by AFL. I would like
to perform fuzzing of a large and complex external server
° Stat eful that cannot easily be stripped down into small test cases.”

— Tim Newsham (a member of the AFL’s user group) [8]

* Program behaviour -
depends on the current
input & current program
state

Example - FTP protocol

220 FTP Server ready

USER foo

331 User foo OK. Password required
PASS foo

230 User logged in, proceed.

MKD demo

257 Directory created.

CWD demo

250 Requested file action okay, completed.
STOR test.txt

|50 File status okay

226 Transfer complete

QUIT

221 Goodbye!

A sample FTP session to upload a file (test.txt)
to a new folder (demo) on the server

PASS foo

User foo

- ___
Key challenge in testing stateful servers

Stateful servers only accept sequences of (valid) messages in
(valid) orders

* We need a state machine representing the implemented protocol
to guide the test generation process

i — _ _

- - . »
| Q3 How to effectlvely explore the state machme"

Q2. How to construct the state machine

* Time consuming
*Require domain knowledge

*Implemented protocol
could be different from the
standard specification

SETUP request

TEARDOWN
request

TEARDOWN

SETUP with a “range” parameter

Manual & static approach

*Not time consuming

*Capture the exact
implemented protocol

Automatic & dynamic approach

———
Q3. How to explore the state machine

*Prioritise “progressive” states that contribute more
towards increased code coverage than others.

* Step-1: Select a target state
* Step-2:“Replay” to reach a selected progressive state

* Step-3: Mutate the message(s) consumed by the server at
that state

‘ 220, 331 220, 331, 230 220, 331, 230, 257 220, 331, ..., 221

USER foo ——1 PASS foo » MKDdemo —» ... —»] QUIT

Original message sequence (i.e., seed input)

‘ 220, 331 220, 331, 230 220, 331, 230, 257 220, 331, ..., 221

USER foo |—| PASS foo » MKDdemo [—> ... —¥ QUIT

And then, state 331 (User OK) is targeted

‘ 220, 331 220, 331, 530 220, 331, 530 220, 331, ..., 221

USER foo b PASS bar » MKDdemo |—» ... —» QUIT

Not logged in

PASS bar

inferred state machine

Architecture of AFLNet

\ 4

<] State Ma.chine P
¢ Learning '
| Server

Request I responses
pcanfiles |[["1 Sequences IfTarget State Selector :(igOE?e?;)K
|

A

Parser

|
Captured network * :
traffic

(mutated) client requests

Sequence | T T —»{ Server Under Test

Mutators

Sequences
Corpus | Jf KX
\X X X
Message Pool

*Input: captured network traffic in .pcap files
*Output:
*Implemented state machine

Fs1 FSZ ---rSn <>{ Sequence Selector >

*bug-triggering inputs

Results

Branch Coverage Statement Coverage State Coverage
%lIncrease A1y p-value | %lncrease Ao p-value | %lncrease Aip p-value

AFLNET vs AFLNWE lightttp | 121.06 % 1.000 <0001 | 7945% 1.000 <0001 8500% 1.000 < 0.001

liveS55 | 349% 0335 0076 | 244% 0228 0.003 858 % 0392 0230
lightftp | 5773 % 1.000 0026 | 4972% 1000 0026 | 37.00% 1000 0.020
liveS55 | 6413 % 1.000 0026 | 6209% 1000 002 | 100.00% 1.000 0.019

AFLNET vs BooFuzz

AFLNet outperforms BooFuzz and AFL o
2 critical zero-day vulnerabilities found (CVE score 9.8)

A0 o

[A ~Y)
. {
‘L.‘

D-ViewCanj\

£ AlbanLecocq @skeetmtp - 13 Jan

| F - I'musing Afl to find "packet of death" for 3 years, but never manage to detect
- statefull bug with it. Indeed there little litterature on the subject. Can't wait to
read more details on #AFLNet

Extensions

*Make state machine learning more fine grained

S Vs
A joint project with -
%11

CISPA

HELMHOLTZ CENTER FOR
INFORMATION SECURITY

*Make AFLNet work for loT/Industrial network protocols
(e.g., CAN bus, TLS/DTLS protocols)

Directed Fuzzing Structure-aware Stateful Fuzzing
Fuzzing

h [-
D-ViewCam

CYBER

GRAND_CHALLENGE

Hot fuzz: Bug detectives whip up smarter version of classic ...
https://www.theregister.co.uk » 2018/11/28 > better_fuzzer_aflsmart ~

Nov 28, 2018 - Known as AFLSmart, this fuzzing software is built on the powerful American ...
We're told AFLSmart is pretty good at testing applications for common The Register -
Independent news and views for the tech community.

' Shonan Meeting 160 (Japan)
Fuzzing & Symbolic Execution

SSIDES

M=L30OURINE
\

Collaborative Fuzzing

static analyzer

&5

developer/security expert Parallel Fuzzing

Secure Software Development with Fuzzing
In a continuous integration (Cl) setup

1) Commit code changes p
Developer S Jenkins

- 3) pull for fuzzing

g — — <+
v E— E—

r itor

cposttory Cl server Fuzzing nodes
‘ \ 2) Commit fuzz target(s)

(a.k.a test driver(s))

~
A\

Security expert

Problems in this setup

N D
s "\ .] \
\ —| 1) Commit code changes @
Developer Jenkins
3) pull for fuzznng
. .
repositor
P y Cl server Fuzzing nodes

‘ \ 2) Commit fuzz target(s)

N (a.k.a test driver(s))

A

-—
Security expert

*Shortage of security experts

*Delays caused by the communication between
developers & the security experts

*Security expert are not familiar with the code to be
fuzzed

Secure Software Development with Fuzzing
At Google

Kostya Serebryany
@kayseesee

Security expert. Creator of AddressSanitizer,
MemorySanitizer, ThreadSanitizer, and libFuzzer

“Fuzzing is widely used at Google because code owners are writing

their own fuzz targets, as opposed to security experts trying to

find bugs in code they aren't familiar with.” eshonan meeting on Fuzzing and
Symbolic execution (Sept 24-27, 2019, Tokyo, Japan)

Secure Software Development with Fuzzing
In a continuous integration (Cl) setup

1) Commit code changes
2) Commit fuzz target(s)

(a.k.a test driver(s))
Developer

-)
: <)
i)
* []
Fuzzing nodes
’(
A\

Security expert

Collaborative Directed Fuzzing

-Code Database as shared knowledge with a unified queryable
interface (e.g., Github CodeQL)

-Directed Fuzzer accepts dynamic guidance & learn to
gradually become self-guided

Code :
static dynamically

analyzer Database directed

fuzzer
Developer I \
A\

/

Security expert

Directed Fuzzing

ﬁ Data chunk
D Data field

== % Integrity constraint

length of “~«

Choose “directions” to manage the search space &
discover paths which are more likely to trigger program length of *~«
bugs in shorter time

.- crc of

Collaborative Directed Fuzzing

Secure Software Development with Fuzzing
In a continuous integration (CI) setup -Code Database as shared knowledge with a unified queryable

interface (e.g., Github CodeQL)
-Directed Fuzzer accepts dynamic guidance & learn to
gradually become self-guided

1) Commit code changes
Developer @ Jenkins

3) pull for fuzzmg : &*)
. > . static dyn‘amically

analyzer Database directed

fuzzer
Cl server Fuzzing nodes
‘ (2) Commit fuzz target(s)

| N (a.k.a test driver(s))
A ./
— = Developer - Securlty expert
Security expert — A

repository

