
Secure Software Development
with Continuous & Collaborative

Fuzzing

Thuan Pham
Research Fellow

2

~16,000 ~11,000

Bugs found by Google ClusterFuzz as of January 2019

In 160+ open-source projects
integrated with OSS-Fuzz

History of Fuzzing

3

modem

Prof. Barton Miller (University of Wisconsin, Madison),
“the father of fuzzing”, coined the term in 1988

How does Black-box Fuzzing work?

4

System
Under Test

Black-box
Fuzzer

Monitor
(e.g. Crash
detection)

crash
report

crash
input+

Input corpus
(i.e., seeds)

mutated inputs

Example

5

Black-box
Fuzzing

“good”

o!do
god!o
good
?oo?
cood!
b?od
gooooood
godnHggggggggggggg
ggggggggggggggggggggood
goad!
go-590ooooood
$ggofd

6

buf[0]==‘b’

buf[1]==‘a’

buf[2]==‘d’

buf[3]==‘!’

CRASH

o!do
god!o
good
?oo?
cood!

b?od
gooooood
godnHggggggggggggg
ggggggggggggggggggggood
goad!
go-590ooooood
$ggofd

yes

yes

yes

yes

no

no

no

no

A deeper look

White-, Grey-box Fuzzing

•Generate an input & run the program
•Watch the program path traversed by the input
•Try never to repeat the path twice
•Monitor for abnormal behaviours (e.g., crashes)

7

Coverage-based Grey-box Fuzzing

8

System
Under Test

Grey-box
Fuzzer

Input corpus
(i.e., seeds)

…

edge coverage
bitmap

input queue

Mutated inputs

White-box Fuzzing
(a.k.a concolic execution)

9

Theorem
Prover

Satisfiable
(SAT)

Unsatisfiable
(UNSAT)

10

Directed Fuzzing Structure-aware
Fuzzing

Stateful Fuzzing

11

Directed Fuzzing Structure-aware
Fuzzing

Stateful Fuzzing

(ICSE’15, CCS’17)

12

Directed Fuzzing

Choose “directions” to manage the search space &
discover paths which are more likely to trigger program

bugs in shorter time

Motivations for Directed Fuzzing

•Patch testing - continuous testing
•Crash reproduction
•Targeted vulnerability discovery
•Variant analysis

13

Directed Search in White-box Fuzzing
For Crash Reproduction Problem

14

Crash reproducing supports
- In-house debugging and fixing
- Vulnerability assessment

Overview

15

Program binary

Benign input files

(Crash instruction, loaded
modules, call stack, register
values)

Crash-triggering
files

Hercules
Toolset

 3-stage workflow

•involving a set of techniques
•control flow graph extraction
•symbolic-execution based taint analysis
•graph prunning
• loop & string functions handling
•systematic guided backtracking

16

Test Suite
Test Suite

Selected
input files

push ebp
mov ebp,esp
mov edx,esi
push edi
mov esi,[ebp+arg_0]
mov edi,[ebp+arg_4]

Static and
dynamic
analyses

+
IDAPro

Binaries CFG and MDG

Symbolic file

Concolic
exploration

and
precise taint

tracking

CFG and MDG
(pruned)

File structure
info

Hybrid symbolic file

Targeted
concolic

exploration

Crash-revealing input

Crash explanation

1 2 3

Crash
Report

!

Graph prunning

17

Summary:
(x<0 ∧ y!=0)

Main module

module C

...

module B

φ_2φ_1

Crashing module

branch
condition
CT: (x>0)

module A

PC: (x>0 ∧ y==7)

 (x:=-1)

!

T F

crash
location

pruned
path

pruned
path

UNSAT-core Guided Backtracking

18

b1

b2 b3

b4

¬bc1

bc3

bc1

bc2

bc4¬bc4

¬bc3
¬bc2

x Crash Instruction

1st attempt:
PC =
CheckSAT(PC ^ CC) == UNSAT
bc1 contradicts CC

bc1 ∧ ¬bc3 ∧ bc4
2nd attempt
PC' =
CheckSAT(PC’ ^ CC) == SAT
Generate crashing input

¬bc1 ∧ bc2 ∧ bc41) Backtrack to b1
2) Take another branch

minimal unsatisfiable core

(Crash condition: CC)

Results

19

Program Advisory ID #Seed files Hercules Peach S2E

WMP 9.0 CVE-2014-2671 10

WMP 9.0 CVE-2010-0718 10

AR 9.2 CVE-2010-2204 10

RP 1.0 CVE-2010-3000 10

MP 0.35 CVE-2011-0502 10

OV 1.04 CVE-2010-0688 10

Hercules scales to large binary programs such as Adobe
Reader and Windows Media Player and outperforms the
baselines

Directed Greybox as Optimisation Problem
1. Instrumentation Time:

•Extract call graph (CG) and

 control-flow graphs (CFGs).

•For each basic block (BB), compute
distance to target locations.

• Instrument program to aggregate
distance values.

2. Runtime, for each input

•collect coverage and distance
information, and

•decide how long to be fuzzed
based on distance using simulated
annealing algorithm.

20

b1

b2

b3

b4

b5

t1

t2

t3

Results

21

Patch Testing: Reach changed statements

• State-of-the-art in patch testing

• KATCH (based on KLEE symbolic execution tool)

• Patch Coverage (#changed BBs reached)

• While we would expect KATCH to take a substantial lead,  

AFLGo outperforms KATCH in terms of patch coverage.

• BUT: Together they cover 42% and 26%  

more than KATCH and AFLGo individually.  
They complement each other! 

Project Tools diff, sdiff, diff3, cmp
Program Size 42,930 LoC

Chosen Commits 175 commits from Nov’09–May’12
GNU Di�utils

Project Tools
addr2line, ar, cxxfilt, elfedit, nm,
objcopy, objdump, ranlib, readelf
size, strings, strip

Program Size 68,830 LoC + 800kLoC from libraries
Chosen Commits 181 commits from Apr’11–Aug’12

GNU Binutils

Figure 8: Description of the K���� benchmark [21]

In this experiments, we compare our directed greybox fuzzer
AFLG� with K���� in terms of patch coverage and vulnerability
detection. We use the same subjects, experimental parameters, and
infrastructure as the authors of K����. However, we excluded the
smallest subject, �ndutils, because it has the capability to execute
arbitrary commands and delete arbitrary �les. AFLG� actually exe-
cutes the instrumented binary while K���� merely interprets the
LLVM Bytecode. Some descriptive statistics about the remaining
subjects are shown in Figure 8. The virtual infrastructure is pro-
vided on request by the authors of K����. We reuse the same scripts
in the infrastructure to determine target locations and to analyze
the results. We use the same seed corpus und set the same timeout
(i.e., 10 mins per target for Di�utils, 15 mins per target for Binutils).
Conservatively, we make only one virtual core and about 3GB of
main memory available to AFLG� while four cores and 16GB were
made available to K����.

However, we note that such tool comparisons should always
be taken with a grain of salt. An empirical evaluation is always
comparing only the implementations of two concepts rather than
the concepts themselves. Improving the e�ciency or extending the
search space may only be a question of “engineering e�ort” that
is unrelated to the concept [32]. We make a conscious e�ort to
explain the observed phenomena and distinguish conceptual from
technical origins. Moreover, we encourage the reader to consider
the perspective of a security researcher who is actually handling
these tools to establish whether there exists a vulnerability.

5.1 Patch Coverage
We begin by analyzing the patch coverage achieved by both K����
and AFLG� as measured by the number of previously uncovered
basic blocks that were changed in the respective patch.

Table 1: Patch coverage results showing the number of previ-
ously uncovered targets that K���� and AFLG� could cover
in the stipulated time budget, respectively.

#Changed #Uncovered
Basic Blocks Changed BBs K���� AFLG�

Binutils 852 702 135 159
Di�utils 166 108 63 64

Sum 1018 810 198 223

K���� — 59 139 84 — AFLG�

Figure 9: VennDiagram showing the number of changedBBs
that K���� and AFLG� cover individually and together.

AFLG� covers 13% more previously uncovered changed basic blocks
thanK����.AFLG� covers 223 of the previously uncovered changed
basic blocks while K���� covers 198. Column 2 of Table 1 shows the
total number of changed basic blocks while Column 3 shows those
that are not already covered by the existing regression test suite.
Finally, columns 4 and 5 show the number of previously uncovered
basic blocks that K���� and AFLG� covered, respectively. We call
previously uncovered changed basic blocks targets.

While we would expect K��� to take a substantial lead, AFLG�
actually outperforms K���� in terms of patch coverage on the
same benchmark that was published with the K���� paper.

We analyzed the reason why the remaining targets have not
been covered. Many were not covered due to limitations in our
current prototype that we share with K����. For instance, more
than half of the changed basic blocks are accessible only via register-
indirect calls or jumps (e.g., from function-pointers). Those do
not appear as edges in the analyzed call-graph or in the control-
�ow graph. Also, symbolic execution as well as greybox fuzzing is
bogged down by the large search space when the program requires
complex input structure. For example, many Binutils targets can be
executed only if the seed �le contains speci�c sections (e.g., sections
for certain architectures like ARM or MIPS), with an individually
de�ned structure. Both techniques would stand to bene�t from a
higher-quality regression test suite and from a model-based fuzzing
approach [28].

To understand how researchers can bene�t from both approaches,
we investigated the set of targets covered by both techniques. As
we can see in Figure 9, AFLG� can cover 84 targets that K����
cannot cover while K���� covers 59 targets that AFLG� cannot
cover. We attribute the reasonably small intersection to the indi-
vidual strengths of each technique. Symbolic execution can solve
di�cult constraints to enter “compartments” that would otherwise
be di�cult to access [38]. On the other hand, a greybox fuzzer can
quickly explore many paths towards the targets without getting
stuck in a particular “neighborhood” of paths.

AFLG� and K���� complement each other. Together they cover
282 targets, 42% and 26% more than K���� and AFLG� would
cover individually.

22

Directed Fuzzing Structure-aware
Fuzzing

Stateful Fuzzing

(ASE’16, TSE’19)

23

PNG

CHUNK

CHUNKCHUNK

CHUNKlength type

Signature

CRCDATA

xxx yyy…

…

length of crc of

Data chunk

Data field

Integrity constraint

length type CRCDATA

zzz txt…
length of crc of

AFLSmart: Smart Greybox Fuzzing
•Design a high-level structural representation (virtual file
structure) representing all chunk-based file formats

•Apply higher-order mutation operators that work at
“chunks” level together with bit-/byte-level mutators

•Prioritise semantically valid seeds. (i.e., 100% valid means
the whole seed can be successfully parsed by the parser)

24

Architecture of AFLSmart

•File Cracker: transforms seeds (e.g., PNG fi les) to a
tree-based structure, given an input model

•Energy Calculator: spends more time to fuzz more
valid inputs

25

VHHG

$)/6PDUW
)X]]HU

)LOH�
&UDFNHU

URRW

FKXQN� FKXQN�

��� ��� ��� ���

6WUXFWXUH
&ROOHFWRU

9DOLGLW\����

I� I� IQ���

6HHG�6HOHFWRU

$)/6PDUW�
(QHUJ\�&DOFXODWRU

,QSXW�4XHXH

������VSHFLILFDWLRQ

Sample input model of PNG image file

26

Architecture of AFLSmart

•File Cracker: transforms seeds (e.g., PNG fi les) to a
tree-based structure, given an input model

•Energy Calculator: spends more time to fuzz more
valid inputs

27

VHHG

$)/6PDUW
)X]]HU

)LOH�
&UDFNHU

URRW

FKXQN� FKXQN�

��� ��� ��� ���

6WUXFWXUH
&ROOHFWRU

9DOLGLW\����

I� I� IQ���

6HHG�6HOHFWRU

$)/6PDUW�
(QHUJ\�&DOFXODWRU

,QSXW�4XHXH

������VSHFLILFDWLRQ

Results

28

AFLSmart vs Vuzzer
on Vuzzer’s benchmark

42 zero-day bugs found
23 CVEs assigned

29

Google OSS-Fuzz

30

Directed Fuzzing Structure-aware
Fuzzing

Stateful Fuzzing

(ICST’20)

Stateful Greybox Fuzzing: Motivation

•Stateless
• Program behaviour
only depends on the
current input

• e.g., file processing
programs

•Stateful
• Program behaviour
depends on the current
input & current program
state

31

Example - FTP protocol
220 FTP Server ready

USER foo

331 User foo OK. Password required

PASS foo

230 User logged in, proceed.

MKD demo

257 Directory created.

CWD demo

250 Requested file action okay, completed.

STOR test.txt

150 File status okay

226 Transfer complete

QUIT

221 Goodbye!

32

220

331

230 257 250

150226221

User foo

PASS foo

MKD de
mo

CW
D de

mo

STOR test.txt

QUIT

A sample FTP session to upload a file (test.txt)
to a new folder (demo) on the server

Key challenge in testing stateful servers
Stateful servers only accept sequences of (valid) messages in
(valid) orders

• We need a state machine representing the implemented protocol
to guide the test generation process

33

Q2. How to construct the state machine?

Q3. How to effectively explore the state machine?

Q1. How to know the current server state?
Use the server response code (e.g., 230 - user logged in)

Q2. How to construct the state machine
•Time consuming
•Require domain knowledge
• Implemented protocol
could be different from the
standard specification

34

,1,7

5($'<

3/$<

6(783�UHTXHVW 3/$<�UHTXHVW

7($5'2:1�
UHTXHVW

7($5'2:1

6(783�ZLWK�D�³UDQJH´�SDUDPHWHU

3/$<�UHTXHVW2WKHU�UHTXHVWV

6(783�UHTXHVW

Manual & static approach

•Not time consuming
•Capture the exact
implemented protocol

Automatic & dynamic approach

Q3. How to explore the state machine
•Prioritise “progressive” states that contribute more
towards increased code coverage than others.
• Step-1: Select a target state
• Step-2: “Replay” to reach a selected progressive state
• Step-3: Mutate the message(s) consumed by the server at
that state

35

86(5�IRR 3$66�IRR 0.'�GHPR 48,7

�������� ������������� ������������������ ����������«�����

���

36

86(5�IRR 3$66�IRR 0.'�GHPR 48,7

�������� ������������� ������������������ ����������«�����

���

Original message sequence (i.e., seed input)

86(5�IRR 3$66�EDU 0.'�GHPR 48,7

�������� ������������� ������������� ����������«�����

���

And then, state 331 (User OK) is targeted

��� ��� ��� ������ ��� ��� ���

��� 1RW�ORJJHG�LQ

3$66�EDU
48,7

inferred state machine

Architecture of AFLNet

37

6WDWH�0DFKLQH
/HDUQLQJ

7DUJHW�6WDWH�6HOHFWRU

6HTXHQFH�6HOHFWRU 6HTXHQFH�
0XWDWRUV 6HUYHU�8QGHU�7HVW

�PXWDWHG��FOLHQW�UHTXHVWV
6� ���

5HTXHVW�
6HTXHQFHV�
3DUVHU

�SFDS�ILOHV

&DSWXUHG�QHWZRUN
WUDIILF�

���
6� 6Q

6HTXHQFHV�
&RUSXV

VHUYHU�
UHVSRQVHV
�H�J���³����2.´��
³����(55´�

0HVVDJH�3RRO

•Input: captured network traffic in .pcap files
•Output:

• Implemented state machine
•bug-triggering inputs

Results

38

AFLNet outperforms BooFuzz and AFL
2 critical zero-day vulnerabilities found (CVE score 9.8)

Extensions

•Make state machine learning more fine grained

39

•Make AFLNet work for IoT/Industrial network protocols
(e.g., CAN bus, TLS/DTLS protocols)

A joint project with

40

Directed Fuzzing Structure-aware
Fuzzing

Stateful Fuzzing

41

Shonan Meeting 160 (Japan)
Fuzzing & Symbolic Execution

Collaborative Fuzzing

42

static analyzer

developer/security expert Parallel Fuzzing

Secure Software Development with Fuzzing

43

In a continuous integration (CI) setup

CI serverrepository

Security expert

Developer
1) Commit code changes

2) Commit fuzz target(s)
(a.k.a test driver(s))

3) pull for fuzzing

Fuzzing nodes

Problems in this setup

44

•Shortage of security experts
•Delays caused by the communication between
developers & the security experts

•Security expert are not familiar with the code to be
fuzzed

Secure Software Development with Fuzzing
At Google

45

Security expert. Creator of AddressSanitizer,
MemorySanitizer, ThreadSanitizer, and libFuzzer

“Fuzzing is widely used at Google because code owners are writing
their own fuzz targets, as opposed to security experts trying to
find bugs in code they aren't familiar with.” @Shonan meeting on Fuzzing and
Symbolic execution (Sept 24-27, 2019, Tokyo, Japan)

Kostya Serebryany
@kayseesee

Secure Software Development with Fuzzing

46

In a continuous integration (CI) setup

CI serverrepository

Developer

1) Commit code changes
2) Commit fuzz target(s)

(a.k.a test driver(s))

3) pull for fuzzing

Fuzzing nodes

Security expert

Collaborative Directed Fuzzing

47

Code
Database

Developer Security expert

static
analyzer

dynamically
directed

fuzzer

-Code Database as shared knowledge with a unified queryable
interface (e.g., Github CodeQL)

-Directed Fuzzer accepts dynamic guidance & learn to
gradually become self-guided

48

