

Computer Science Department

Securing CPS and IoT in Smart Living

Sajal K. Das

(sdas@mst.edu)

Warm Up

Who is the founder of Facebook?

Who is the Co-founder and CEO of Twitter?

Jack Dorsey ... was a student in our department He's also CEO and Co-founder of Square!

Career Evolution

Parallel Computing Mobile ComputingPervasive / Smart(1985 -)(1995 -)Computing (2001 -)						
• HPC	Cellular (3G/4G) Networks	 Sensor Networks, IoTs 				
 Parallel Algorithms 	 Ad hoc Networks, WLANs 	 Pervasive Computing 				
 Distributed Systems 	 Opportunistic Networking 	 Situation-awareness 				
Petri Nets	 Cognitive Radios 	 Middleware Services 				
Interconnection Networks	Wireless Mesh Networks	 Security, Privacy, Trust 				
 Task Scheduling 	 Mobility Management 	 Smart Environments 				
 Load Balancing 	Resource Management	 Cyber-Physical Systems 				
 Cluster Computing 	Wireless Internet Multimedia	Smart Health Care				
P2P Networking	 Wireless QoS and QoE 	 Smart Grid / Energy 				
Grid / Cloud Computing	Mobile Cloud	Smart City				
Green Computing	 Edge and Fog Computing 	 Mobile Crowd Sensing 				

• Computational Systems Biology (2005 -); Social Networks (2007 -)

• Smart and Connected Communities (2016 -)

Smart Sensing \rightarrow CPH \rightarrow Smart Computing

Efficient Architectures, Algorithms and Protocols, Modeling, Analysis, Optimization, Performance Evaluation, Prototype

Smart Systems and Applications Economics, Auction, Policy Human Behavior, Game Models, Social Networks Game Smart City, Cyber-Physical-Human Systems (CPH), Security, Privacy, Trust Reliability, Vulnerability Mobile Crowd Sensing, Internet of Things (IoT) Distributed/Mobile/Cloud/Pervasive Computing Middleware Services and Virtualization Wireless Broadband, P2P, 3G/4G/5G Sensors, Optical, Internet, Cellular, Mobile Wearables, Home/Enterprise Ad hoc, WLANs, IoT, RFID **Networks Cognitive Radios**

See Google Scholar ...

My Collaborations with Australia

UNSW, Sydney

Prof. Boualem Benatallah A/P Dr. Wen Hu Prof. Salil Kanhere

- Univ. of Sydney Prof. Albert Zomaya
- ANU, Canberra Prof. Weifa Liang
- Data61
 Dr. Sara Khalifa
- Central Queensland Univ.
 Dr. Jahan Hassan

Prof. Mahbub Hassan Prof. Sanjay Jha Prof. Aruna Seneviratne

UTS, Sydney Prof. Guoqiang Mao

RMIT, Melbourne A/P Dr. Tao Gu A/P Dr. Flora Salim

Univ. of Queensland Prof. Jaga Indulska

Curtin Univ. Prof. Sweta Venkatesh

Outline

- Sensor Networks and IoT Security
 - NSF Project: Pervasively Secure Infrastructures (PSI)
- Smart City and Cyber-Physical-Human Convergence
 NSF Project: Smart Grid Security
- Mobile Crowdsensing
 - Trustworthy Vehicular Crowd Sensing
- Future Directions

Era of Observation: Sensing the Physical World

lonitoring

Agriculture Border Surveillance Border Surveil

Ecology, Environment

M. Di Francesco, S. K. Das, and G. Anastasi, "Data Collection in Wireless Sensor Networks with Mobile Elements: A Survey," *ACM Transactions on Sensor Networks*, 8(1), Aug 2011.

Smartphone: A Rich Sensing Platform

 By 2020, number of smartphones is expected to be > 8 billion

R. Fakoor, M. Raj, A. Nazi, M. Francesco, S. K. Das, "An Integrated Cloud-based Framework for Mobile Phone Sensing," *Proc. ACM SIGCOMM Workshop on Mobile Cloud Computing*, Aug 2012.

- Plethora of Sensors
 - temperature, light, humidity, motion, acceleration, GPS, ...
- Multiple Wireless Interfaces
 - WiFi, Bluetooth, long range cellular radio to connect to external sensors
- Internet Access
 - high-speed 3G/4G connection
- Multimedia Sensing
 - -Audio, video, image, text

Sensor and IoT Challenges

Reliability, Security, Privacy and Trust

- How to secure against adversarial, selfish, and malicious attacks? Prevent cascade failures?
- How to *trust* reported data (crowdsensing) for robust decisions? IoT data quality and QoI?
- How to incentivize for reliable information?
- Interdependence and Data Analytics
- How to model interdependence and information loss across overlapped smart spaces?
- How to analyze (multi-modal) data and design machine learning and prediction models?
- What are the impacts of social dynamics and human behavior on Smart Living?

- J.-W. Ho, M. Wright, S. K. Das, "Zone Trust: Fast Node Compromise Detection and Revocation in Sensor Networks," *IEEE Transactions Dependable and Secure Computing* (special issue on Learning and Games, Security), 9(4): 494-511, 2012.
- P. De, Y. Liu, and S. K. Das, "An Epidemic Theoretic Framework for Vulnerability Analysis of Broadcast Protocols in Wireless Sensor Networks," *IEEE Transactions on Mobile Computing*, 8(3): 413-425, Mar 2009.
- N. Marchang, R. Dutta, and S. K. Das, "A Novel Approach for Efficient Usage of Intrusion Detection System in Mobile Ad Hoc Networks," *IEEE Transactions on Vehicular Technology*, 66(2): 1684-1695, Feb 2017.
- S. Bhattacharjee, N. Ghosh, V. K. Shah and S. K. Das, "QnQ: Quality and Quantity based Unified Approach for Secure and Trustworthy Mobile Crowdsensing," *IEEE Transactions on Mobile Computing*, 19(1): 200-216, Jan 2020.

NSF Project (completed) Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking and Community Computing

Securing Sensor Networks and IoT

Broader Impacts:

- Critical infrastructure protection and border security
- Transportation (air, rail)
- Utility plants
- Public / private places (airport, train stations, shopping malls, parks)

Threats to WSNs and IoT

- Attack Types
 - Node Compromise
 - False Data Injection
 - Route Disruption
- Denial of Service (DoS)

- Node Compromise
 - Physically capture sensor / IoT node
 - Generate replicas
 - Spread self-propagating worm
- Revealed Secrets
 - Cryptographic keys, code, commands
- Enemy's Puppeteers
 - Trojans in network with full trust

Multi-Level Security Framework

- J.-W. Ho, M. Wright, and S. K. Das, "Fast Detection of Mobile Replica Node Attacks in Sensor Networks Using Sequential Hypothesis Testing," *IEEE Transactions Mobile Computing*, 10(6): 767-782, June 2011.
- J.-W. Ho, M. Wright, S. K. Das, "Zone Trust: Fast Node Compromise Detection and Revocation in Sensor Networks," *IEEE Transactions Dependable and Secure Computing* (special issue on Learning and Games, Security), 9(4): 494-511, 2012.
- P. De, Y. Liu, and S. K. Das, "An Epidemic Theoretic Framework for Vulnerability Analysis of Broadcast Protocols in Wireless Sensor Networks," *IEEE Transactions on Mobile Computing*, 8(3): 413-425, Mar 2009.
- N. Marchang, R. Dutta, and S. K. Das, "A Novel Approach for Efficient Usage of Intrusion Detection System in Mobile Ad Hoc Networks," *IEEE Transactions on Vehicular Technology*, 66(2): 1684-1695, Feb 2017.

Foundations of CPS Security

- S. Roy, M. Xue, S. K. Das, "Security and Discoverability of Spread Dynamics in Cyber-Physical Networks," *IEEE Trans. on Parallel and Distributed Systems* (special issue CPS), 23(9): 2012.
- A. Sturaro, S. Silvestri, M. Conti, and S. K. Das, "A Realistic Model for Failure Propagation in Interdependent Cyber-Physical Systems," *IEEE Transactions on Network Science and Engineering* (Special Issue on Network Science for High-Confidence Cyber-Physical Systems), 7(2): 817-831, 2020.

Outline

- Sensor Networks and IoT Security
 - NSF Project: Pervasively Secure Infrastructures (PSI)
- Smart City and Cyber-Physical-Human Convergence
 NSF Project: Smart Grid Security
- Mobile Crowdsensing
 - Trustworthy Vehicular Crowd Sensing
- Future Directions

Cyber-Physical-Human (CPH) Convergence

CPH are natural / engineered systems that integrate sensing, communication, computing, control and human in the loop

M. Conti, S. K. Das, et al. "Looking Ahead in Pervasive Computing: Challenges and Opportunities in the Era of Cyber-Physical Convergence. *Pervasive and Mobile Computing, 8*(1): 2-21, 2012.

Cyber-Physical-Human (CPH) Convergence

CPH are natural / engineered systems that integrate sensing, communication, computing, control and human in the loop

M. Conti, S. K. Das, et al. "Looking Ahead in Pervasive Computing: Challenges and Opportunities in the Era of Cyber-Physical Convergence. *Pervasive and Mobile Computing, 8*(1): 2-21, 2012.

What is a Smart Environment?

A Smart Environment is one that is able to autonomously *acquire* and *apply* knowledge about inhabitants and their environment, and *adapt* to improve experience *without explicit awareness*

Corollary: makes *intelligent decisions* in *automated, context-aware* manner → pervasive or ubiquitous computing

Context /Situation-awareness is the key

Example Contexts:

- Mobility, Activity, Occupancy, Preferences, ...
- Desire, Behavior, Mood, Emotions, ...

• D. J. Cook and S. K. Das, "How Smart Are Our Environments? An Updated Look at State of the Art," *Pervasive and Mobile Computing*, 3(2). 2007.

A. Roy, S. K. Das, and K. Basu, "A Predictive Framework for Context-aware Resource Management in Smart Homes," *IEEE Transactions on Mobile Computing*, 6(11): 1270-1283, 2007.

Smart City as a Rational Agent

- D. J. Cook and S. K. Das, "How Smart Are Our Environments? An Updated Look at State of the Art," PMC, 3(2): 2007.
- S. Roy, N. Ghosh, S. K. Das, "A Bio-inspired Data Collection Framework for Qol-aware Smart City Applications," *IEEE PerCom*, Mar 2019.
- V. K. Shah, S. Bhattacharjee, S. Silvestri, and S. K. Das, "An Effective Dynamic Spectrum Access based Network Architecture for Smart Cities," *IEEE Annual International Smart Cities Conference*, Sept 2018.
- V. Shah, B. Luciano, S. Silvestri, S. Bhattacharjee, and S. K. Das, "A Diverse Band-aware DSA Network Architecture for Delay-Tolerant Smart City Applications," *IEEE Transactions on Network and Service Management*, 17(2): 1125-1139, June 2020.

Smart Living: The Next Frontier

<u>Characteristics:</u> Complex Systems, Heterogeneous, Large-scale, CPH, Big Data, IoT <u>Challenges:</u> Interdependence, Robustness, Reliability, Resiliency, Security, Privacy

Conti, Passarella, and Das, "The Internet of People (IoP): A New Wave in Pervasive Computing," *PMC*, 41, 2017. Shah, Bhattacharjee, Silvestri, Das, "Designing Sustainable Smart Connected Communities," ACM BuildSys, 2017

IoT Enables Societal-Scale CPH

Security Related Grand Challenges:

- Security and Safety of People, Infrastructures, information, Assets
- Extreme Events Management (before, during, after disasters)
- Healthcare (health risks, wellbeing)
- Sustainability (air pollution & hazard monitoring, detection and mitigation)

Vulnerability in Smart City Scenario

Smart City Security: Data-driven Approach

Convergent Research: *Unified Frameworks* and *Invariants* for secure and trustworthy decisions in interdependent CPSs (Smart City, Smart Mobility, Smart Grid / Energy, Smart Healthcare, Sustainability, Resilience).

S. Tan, D. De, W. Song and S. K. Das, "Security Advances in Smart Grid: A Data Driven Approach," *IEEE Communications Surveys and Tutorials*, 18(1): 397-422, 2017.

Smart Living CPS/IoT Security

Smart Healthcare (CPS)

Intelligent Transportation

Emergency/ Disaster Response

Security: The CIA Triad

Integrity Ensure information is not modified, falsified nor manipulated.

(Accuracy of Data)

False Data Injection, Data Falsification, Byzantine and Spoofing Attacks

Availability Ensure information is readily available to authorized entities. INTEGRITY (Timely Access & Use) **Denial of Service** (DoS), Data Omission INFORMATION Jamming Attacks SECURITY CONFIDENTIALITY **Confidentiality Ensure information is not** Phishing, Keylogging, disclosed to unauthorized Wiretapping, Sniffing entities. (*Restricted Visibility*)

Security and Trustworthiness

<u>Smart Grid</u>: Data (Smart Meter) → False Data Injection → Mitigate via Isolation

<u>Crowd Sensing</u>: Data (Human Reports) → Malicious Intent → Mitigate via Dependable Decision

NSF CPS Breakthrough Project (2015-2020)

Securing Smart Grid by Understanding Communications Infrastructure Dependencies

Securing IoTs in Smart Grid

Securing a Smart Grid

(Secure Computation between IoT Devices and Energy Utility)

S. Tan, D. De, W. Song and S. K. Das, "Survey of Security Advances in Smart Grid: A Data Driven Approach," *IEEE Communications Surveys and Tutorials*, 18(1): 397-422, 2017.

Advanced Metering Infrastructure (AMI)

Use of AMI Data

- Automated Billing
- Automated Demand Response (DR)
- Load Forecast and Planned Generation/Distribution

Securing a Smart Grid

- Integrity of AMI data
- Protection against false data injection
- AMI attack detection and mitigation
- Attack and trust models
- Billing system vulnerability

S. Bhattacharjee, A. Thakur, S. Silvestri, and S. K. Das, "Statistical Security Incident Forensics against Data Falsification in Smart Grid Advanced Metering Infrastructure," *ACM Conference on Data and Applications Security and Privacy* (CODASPY), Scottsdale, Arizona, pp. 35-45, Mar 2017. [*IEEE Trans. Dependable and Secure Computing*, to appear, 2020]

Data Falsification Attacks in AMI

Actual recorded power consumption	Time series of power consumption data		
for smart meter i at time t : $P^{i}_{t}(act)$	of N smart meters $p_t = [p_t^1, \cdots, p_t^N]$		
Data Falsification Attack Types:	Margin of False Data (δ_{avg})		
• Additive $\rightarrow P^{i}_{t} = P^{i}_{t}(act) + \delta_{t}$	Short-term Greedy → 900W +		
• Deductive $\rightarrow P^{i}_{t} = P^{i}_{t}(act) \cdot \delta_{t}$	■ Medium-term → 400 - 900W		
Camouflage: Balanced additive and deductive attacks from	• Long-term Stealthy \rightarrow 50 - 400W		
different meters.	Freetien of Compressiond Nodes		
Conflict: Uncoordinated	Fraction of Compromised Nodes		
additive and deductive attacks.	$(\rho_{mal} = M/N)$		
Strength of the Attack:	 M = Number of Compromised Meters injecting false data 		
$\delta_t \in \{\delta_{min}, \delta_{max}\}$ is a false random	Meters injecting faise data		
bias value chosen according to	■ Isolated Adversary \rightarrow 1% - 5%		
some strategic distribution.	■ Organized Adversary → 5%-50%		
δ_{avg} (<i>Margin of False Data</i>) is the			

Novel Security Forensic Framework

- S. Bhattacharjee and S. K. Das, "Detection and Forensics against Stealthy Data Falsification in Smart Metering Infrastructure," *IEEE Transactions on Dependable and Secure Computing*, to appear, 2020.
- S. Bhattacharjee, A. Thakur, and S. K. Das, "Towards Fast and Semi-supervised Identification of Smart Meters Launching Data Falsification Attacks," *13th ACM Asia Conference on Computer and Communications Security* (ASIACCS), pp. 173-185, 2018.

Anomaly Detection: A Data Driven Approach

Point Anomaly: Individual data instances of detection metric is anomalous.

Collective Anomaly: <u>Cumulative</u> subsequence of individually nonanomalous data instances are collectively anomalous.

Context Anomaly: Data instances violates a known attribute or law.

Nature of Data and Challenges

Proposed Point Anomaly Detection Metric

Legitimate and Malicious Changes

- Transform the observed data into a Gaussian mixture
- A light weight statistical indicator for anomaly detection: Ratio of Harmonic Mean (HM) to Arithmetic Mean (AM) of Gaussian mixture

Anomaly Detection

- Drop in HM / AM ratio indicates organized falsification
- Maintain ratio as forgetting and cumulative weighted moving averages
- Property holds for all attack types and higher fraction of compromised nodes

Evidence for Meter Diagnostics

Three Approaches:

- 1. Entropy based Trust Model with binary evidence space (Supervised) (ACM CODASPY 2017, IEEE TDSC'20)
- 2. Folded Gaussian Trust with multinomial evidence space (Semi-Supervised) (ACM ASIACCS 2018, ACM TOPS)
- 3. Information Theoretic Diversity Index based Approach(Unsupervised) (Under Review)

Folded Gaussian Trust Semi-Supervised Method

Input:

- Attack Status = Y or N
- Attack Type = if "Y"
- Robust Mean = μ_{MR}
- Robust Standard Deviation = σ_{MR}

Output:

Compromised and Non-Compromised Meters

- Scales well for large micro grids.
- Accuracy depends on training.
- More fine-grained approach to evidential modeling improves accuracy.

KL-Distance based Trust Scoring and Classification

True (Historical) Proximity Distribution
$$X_i(t) = \begin{cases} 1 \longrightarrow p^i(t) \in \{\mu(t) \mp \sigma(t)\} \\ 0 \longrightarrow 0$$
 therwiseInverse Square Root $X_i(t) = 1 \rightarrow \text{probability (r)}$ $Q_i = \frac{1}{1 + \sqrt{D_i(X||Y)}}$ $0 \leq Q_i \leq 1$ Observed (Current) Proximity Distribution $Y_i(t) = \begin{cases} 1 \longrightarrow p^i(t) \in \{\mu_{MR}(t) \mp \sigma_{MR}(t)\} \\ 0 \longrightarrow 0$ therwiseGeneralized Linear Model $W^i = log_2\left(\frac{Q^i}{1 - Q^i}\right)$ $W^i = log_2\left(\frac{Q^i}{1 - Q^i}\right)$ Trust Score $W_i(t) = 1 \rightarrow \text{probability (q)}$ Kullback-Leibler (KL) Divergence $D_i(X_i||Y_i) = (1 - r) ln(\frac{1 - r}{1 - q}) + r ln(\frac{r}{q})$

Comparison with Existing Works

Parameter	Proposed Method	Neural Network [1]	ARMA Model [2]	Relative Entropy [3]
False Alarm	13%	29%	33%	11%
Missed Detection	9%	24%	28%	8%
δ_{avg}	400W	400W	N/A	800W
$ ho_{mal}$	> 40%	N/A	N/A	< 40%
Micro-grid size	5000	5000	200	200
Learning Type	Semi- Supervised	Supervised	Supervised	Supervised
Detection Time	< 10 days	1 year	1 month	1 month

[1] Neural Network, Jokar et. al, IEEE Transactions on Smart Grid, 2016.

[2] ARMA (Auto Regressive Moving Average), Mashima et. Al, RAID 2012.

[3] Entropy: Bhattacharjee, Das, et. al, ACM CODASPY 2017; IEEE TMC 2020.

Proposed Methord: Folded Gaussian Trust model

Emulation of Attacks

- Fed real smart meter data into a virtual simulated AMI microgrid since real malicious data are not available.
- Chose a subset (*M*) of meters as compromised (ρ_{mal}) and launched data falsification with some false data margin (δ_{avg}).
- For each ρ_{mal} , experimented with varying subsets *M* and different starting points.
- Repeated for all ρ_{mal} and δ_{avg} that got manifested according to various attack distributions.

Attack Distributions:

- Non-Data Order Aware: δ_t is distributed uniformly random.
 (No prior knowledge)
- Data Order Aware: Bias vector elements are intelligently matched with Pⁱ_t(act).
 (Partial knowledge)
- Incremental: Increase δ_{avg} slightly in each time slot
- **Omission**: Drop the data.
- **On-Off:** Attack on specific time.
- Persistent: Strategies that ensure evasion. (Complete knowledge)

Performance of Intrusion Detection

Average Time to Detect (TTD):

Difference in time between attack launched and eventual detection **Detection**

Expected Time between False Alarms:

 $E(T_{fa}) = \frac{\sum_{1}^{\eta_{FA}} T_{BFA}}{\eta_{FA}}$

Number of False Alarms: η_{FA}

Time between pair of False Alarms: T_{BFA}

Impact of Undetected Attack per Hour:

 $I = (\delta_{avg} * M * C) / 24$ C = electricity cost/KWH

Mitigation

Break Even Time:

Mitigation

Time taken for impact revenue to equal the initial attack cost.

Why not ROC curves?

 For persistent attacks that are undetected, there is no way to quantify mitigation benefit.

Solution: Plot $E(T_{fa})$ vs. *I*

[Urbina et. al, CCS 2016]

• Free from biases such as base rate fallacy.

Break Even Time indicates attractiveness of low margins of attack.

[ACM CODASPY'17, IEEE TDSC'20]

Mitigation Performance against Persistent Attacks

Compromised Meter Detection Results

Outline

- Sensor Networks and IoT Security
 - > NSF Project: *Pervasively Secure Infrastructures (PSI)*
- Smart City and Cyber-Physical-Human Convergence
 NSF Project: Smart Grid Security
- Mobile Crowdsensing
 - Trustworthy Vehicular Crowd Sensing
- Future Directions

NSF JUNO2 Project (2018-2021)

STEAM: Secure and Trustworthy Framework for Integrated Energy and Mobility in Smart Connected Communities

Missouri S&T (PI: Das)

Jointly with Vanderbilt University, USA Osaka University, Waseda University, Nara Institute of Technology, Japan

Securing CPS and IoTs

Crowd Sensing (CS) Architecture

Report: Citizens contribute to data, alerts, notifications, etc.

(Published) Event: A summary statistic inferred from the reports (e.g. traffic jam, accident, road closure, weather hazard).

Feedback Monitoring: Endorsement on the published event or Ratings (*e.g., Useful, Not useful, Not sure, 5 star ratings*)

Vehicular CPS

R. P Barnwal, N. Ghosh, S. K. Ghosh, S. K. Das, "Publish or Drop Traffic Event Alerts? Quality-aware Decision Making in Participatory Sensing Vehicular CPS," *ACM Transactions Cyber-Physical Systems*, 4(1): Jan 2020.

Vehicular Crowd Sensing: Threats Landscape

Why Selfish Intent?

- Credit-based reward mechanism to motivate constant reports.
- Incentivizes degree of contribution (**quantity**) rather than **quality** of contributions.

(Huge # of *false reports* in Waze traffic Dataset, *IEEE* SMARTCOMP 2016)

Why Malicious Intent ?

- Create congestion (civilian impact)
- Drain company's revenue (economic impact)
- Strategic blockage (internal security impact)

Problems with Existing Models

- Cannot embed variations in quantity of ratings on final trust
- Not Null Invariant
- Sacrifice Quality for Quantity or vice-versa.

(IEEE PerCom Workshop 2017, IEEE TMC 2020)

Reporting Behaviors:

- <u>Honest</u>: mostly reports true events.
- <u>Selfish</u>: intermittently generate true and false reports with certain probabilities.
- <u>Malicious</u>: collude on reporting the same false event type in a vicinity.

Rating Behaviors:

- <u>Ballot stuffing</u>: Rogue raters give positive ratings to false events.
- <u>Bad mouthing:</u> Rogue raters give false ratings to true events.
- **Obfuscation stuffing:** Rogue raters give uncertain ratings to false events.

Vehicular CPS

System Model

- Vehicles/ Apps (called nodes) are networked acting as communication units
- VCPS nodes (cyber agent of human) sense events and share alerts with peers for informed decision making
- Based on sensing information, vehicles take decision resulting into change of traffic dynamics

Vehicular sensing node / Adversary

- Spoofs location to report random event alerts to earn undue rewards: Side channel participation (Spoofing Attack)
- Raises false event alerts to decrease system reliability or gain resources: False Participation (Spamming Attack)

Objectives

- Devise a framework to identify location spoofing, spamming nodes
- Define Quality of Contribution (QoC) metric for nodes' contributions based on reputation history; classify as Honest, Liars, or Spoofers
- Expected Utility Theory (EUT) based decision model to filter false events

Quality and Quantity (QnQ) Framework

S. Bhattacharjee, N. Ghosh, V. K. Shah, S. K. Das, "QnQ: A Reputation Model to Secure Mobile Crowdsourcing Applications from Incentive Losses," *IEEE Conf. on Communications and Network Security* (CNS), 2017. [Extended version, *IEEE Transactions on Mobile Computing*, 19(1): 200-216, Jan 2020.]

Trust and Belief Model

- How to build trust to guarantee reliable operations?
- Trust is extremely complex:
 - ✓ How to model and quantify trust?
 - ✓ How to propagate trust?
 - ✓ How to reach trust consensus?
- Build a Reputation System
 - Reliable users are rewarded and hence have high reputation
 - Reputation evolves dynamically with time – may also go down

- F. Restuccia and S. K. Das, "FIDES: A Trust-based Framework for Secure User Incentivization in Participatory Sensing," *IEEE Symposium on a World of Mobile Multimedia Networks* (WoWMoM), June 2014.
- T. Luo, S. S. Kanhere, J. Huang, S. K. Das, and F. Wu, "Sustainable Incentives for Mobile Crowdsensing: Auctions, Lotteries, Trust and Reputation Systems," *IEEE Communications Magazine* (special issue on Sustainable Incentive Mechanisms for Mobile Crowdsensing), 55(3): 68-74, Mar 2017.

Quality of Information (QoI) Model

- T. T. Luo, J. Huang, S. S. Kanhere, J. Zhang, and S. K. Das, "Improving IoT Data Quality in Mobile Crowdsensing: A Cross Validation Approach," *IEEE Internet of Things Journal*, 6(3): 5651-5664, June 2019.
- F. Restuccia, N. Ghosh, S. Bhattacharjee, S. K. Das, and T. Melodia, "Quality of Information in Mobile Crowdsensing: Survey and Research Challenges" *ACM Transactions on Sensor Networks*, 13(4): 34:1-34:43, 2017.
- F. Restuccia, S. K. Das, and J. Payton, "Incentive Mechanisms for Participatory Sensing: Survey and Research Challenges" *ACM Transactions on Sensor Networks*, 12(2): Apr 2016.

Results: Attack Detection

Classification: Proposed Approach (Left); D-S Reputation (Right)

Results: Attack Mitigation

T. Luo, S. S. Kanhere, S. K. Das, and H.-P. Tan, "Incentive Mechanism Design for Heterogeneous Crowdsourcing Using All-Pay Contests," *IEEE Transactions on Mobile Computing*, 15(9): 2234-2246, 2016. T. Luo, S. K. Das, H.-P. Tan, and L. Xia, "Incentive Mechanism Design for Crowdsourcing: An All-Pay Auction Approach," *ACM Transactions on Intelligent Systems and Technology*, 7(3): 1-26, 2016.

Vehicular CPS: The SAFE Framework

SAFE = Spoofed and False Report Eradicator

Experimental Evaluation

- Experimental evaluation of the SAFE framework is based on
 - Synthetic Data: Vehicular node mobility traces, event generation and report contribution simulated using R tools
 - Real Data: Real taxi-mounted smartphone app-generated GPS traces of 289 taxicabs across different regions of Rome (from CRAWDAD)
- Performance metrics:
 - F1 score (F measure): Harmonic average of precision and recall for classification of rogue or genuine reporting nodes
 - Success/ Error rate: Decision making accuracy to publish the true event reports and drop the false event reports
- Comparison with state-of-the-art methods: FJOS (FIDES trust model) and HGOM (Gompertz function based model).

Experimental Results

Relative performance of SAFE using Synthetic dataset

Relative performance of SAFE using Real dataset

Results

- (a) Success/Error Rates vs p_z
- (b) Succ. Rate vs % Genuine Participa-(c) Error Rate vs % Genuine Participation tion

Performance of Expected Utility Theory (EUT) based decision model

- Spoofing and False reporting are genuine problems in VCPS and can be measured using the concept of Quality of Contributions (QoC).
- SAFE framework is more effective for classification of rogue and genuine reporting nodes in VCPS (with false and spoofing report generators).
- Two-level EUT-based decision making model gives high success rate and low error rates even when genuine nodes are in minority (40 45%)

Securing CPS and IoTs

Goal: Create a technology-enable security framework to monitor, of (recover from) natural and man- Methodology: Sensor Fusion; Situation-awareness; Information Theory; Game Theory; Epidemic Theory; Trust and Belief Models; Machine Learning; Data Mining. Publications: TDSc'17, TMC'11, ToSN'18, TDSC'12, TVT'17, AdHoc'15, AdHoc'13, TMC'09, Infocom'19, ComsNets'19, SmartCity'18, BuildSys'17,	ed, multi-level letect, prevent made disasters. Resi- lience	Goal: Predict huma detect false event i congestion; air qua Metho ML; Si Comp Utility Privac Smart Mobility	an and vehicular mobility; reporting; transport planning, alitv: disease spread. odology: Information Theory; tochastic Games; Dictionary ression; Crowdsensing; Theory; Behavior Models; cy-Preserving Data Mining. Publications: TCPS'20, TII'17, ToN'08, TMC'12, PMC'18, Entropy'15, WiNet'02, PerCom'15, SDM'18, PerCom'06, InfoCom'04, MobiCom'99	
Publications: TMC'19, TMC'18, TSC'18, PMC'17, ToN'16, SMC'16, TMC'12, Computer'18, BSN15, PerCom'19, SmartComp'16	Smart Health	Smart Energy	Publications: TMC'20, TDSC'20, TNSE'19, TOPS, TSG'15, CST17, SUR14, CCS'18, CODASPY'17, CNS'17, SmartGrid'12	
Methodology: Privacy-aware Data Fusion; Deep Learning; Dynamic Bayesian Networks; Uncertainty Reasoning; Sensor Analytics; Qol-aware Inference.		An An Re Pro	ethodology: Time Series alysis; State Estimation; ML; omaly Detection; Trust and putation Model; Epidemic & ospect Theory; Incentives.	
Goal: Cognitive / physical health wellness management; dementia fine-grain activity recognition un	<i>monitoring;</i> <i>detection;</i> <i>der uncertainty.</i>	Goal: Detect anomalies in energy consumption (false data injection attacks); mitigate cascade failure; secure and trustworthy decisions		

Outline

Sensor Networks and IoT Security

- NSF Project: Pervasively Secure Infrastructures (PSI)
- Smart City and Cyber-Physical-Human Convergence
 NSF Project: Smart Grid Security
- Mobile Crowdsensing
 - Trustworthy Vehicular Crowd Sensing
- Future Directions

Sensing, Reasoning and Control

Securing a Smart City

Interdependence and Uncertainty related to:

- Complexity and Scale
- Security & Privacy in Multiple Smart Spaces
- Human Behavior and Social Dynamics
- Mobility-Energy-Health
- AI, ML, Data Analytics
- Decision Making
- Full System Modeling

UncertaintyStochasticDynamicGameInformationImpact SpreadReasoningOptimizationControlTheoryTheoryDynamics

IEEE SMARTCOMP 2020 Big Data IoT Security Workshop www.smart-comp.org

"Smart Living through Computing"

Bologna, Italy, Sep 14-17, 2020

Volume 8, Issue 2, April 2012 ISSN 1574-1192

Securing Cyber-Physical Critical Infrastructure

Technology, Protocols, and Applications

www

Handbook on

John Wiley, 2005

AL K. DAS

Special section: Wide-Scale Vehicular Sensor Networks and Mobile Sensing guest editors: Paolo Bellavista, Mario Gerla, Hariharan Krishnan, Uichin Lee

22nd International Conference on Distributed Computing and Networking (ICDCN 2021) Jan 5-8, 2021 (www.icdcn.org) Nara, Japan (Deadline July 17)

Sajal Das, Krishna Kant, Nan Zhang

M< Das, Kant, Zhang (2012)

Principles of Cyber-Physical Systems

An Interdisciplinary Approach

Cambridge University Press

Sandip Roy Sajal K. Das

2020

Epilogue

"A *teacher* can never truly teach unless he is still learning himself. A lamp can never light another lamp unless it continues to burn its own flame. The teacher who has come to the end of his subject, who has no living traffic with his knowledge but merely repeats his lesson to his students, can only load their minds, he cannot quicken them".

Rabindranath Tagore (1861-1941) Indian Poet, Nobel Laureate (1913)

"Imagination is more important than knowledge." – Albert Einstein (1879-1955)

Thank You

sdas@mst.edu DBLP Sajal K. Das

www.cs.mst.edu Erdős Number: 3 h-index: 86 Citations: 33,000+