Towards usable and secure graphical passwords for smartphones

Hyoungshick Kim

Sungkyunkwan University, CSIRO Data61

Biometric Authentication

Password or PIN is still needed because biometric authentication schemes cannot sometimes work.

Graphical Passwords

Many graphical password schemes have been introduced.

Sungkyunkwan University (SKKU) Security Lab.

Cyber Security CRC – SAO Seminar Series 4

Android Pattern

Threat Model for Patterns

- There are many known attacks against Android pattern locks.
 - Smudge attacks.
 - Sensor-based side channel attacks.
 - Shoulder surfing attacks.
 - Guessing attacks.
 with 20 consecutive
 guessing attempts
 allowed

Highly Guessable Patterns

The guessing entropy of user-chosen patterns is lower than Random 4-digit PINs

Uellenbeck et al., "Quantifying the security of graphical passwords: the case of android unlock patterns," **ACM CCS**, 2013.

Top 10 Patterns

• The pattern distribution is highly skewed toward a small number of commonly used password.

"On the Effectiveness of Pattern Lock Strength Meters: Measuring the Strength of Real World Pattern Locks," **ACM CHI, 2015.**

Short Length

Small Number of Turns

Sungkyunkwan University (SKKU) Security Lab.

Cyber Security CRC – SAO Seminar Series 10

Popular Directions

Sungkyunkwan University (SKKU) Security Lab.

Cyber Security CRC – SAO Seminar Series 11

Side-Channel Attacks

Pattern Guessing with Smudge

We developed an automated pattern guessing attack by combining Markov model-based guessing attacks with computer vision-based smudge attacks to find a pattern secret with its smudge.

Lock Patterns with Smudge Attacks," ASIACCS 2017

Pattern Guessing with Smudge

Our attack is effective. We can successfully recover a secret pattern with 74.17%. Even for the case after using Facebook, we can still recover a secret pattern with 31.94%.

		Unlocking only	Calling	Texting	Facebook
Avg. # of guessing attempts		4,634.66	6,811.83	9,783.01	13,130.74
Avg. # of guessing attempts (<= 20)		3.79	4.43	5.36	4.82
Total # of cra patterns (<= 2	cked 20)	267 (74.17%)	189 (52.50%)	134 (37.22%)	115 (31.94%)
ſ					

Improving the Security of Android Pattern Lock (1/2)

- Changing a grid layout.
 - The use of a circle or random grid layout [1].
- The use of a bigger grid (e.g., 4×4) layout [2].

 Uellenbeck et al., "Quantifying the security of graphical passwords: the case of android unlock patterns," ACM CCS, 2013.
 Aviv et al., "Is Bigger Better? Comparing User-Generated Passwords on 3x3 vs. 4x4 Grid Sizes for Android's Pattern Unlock," ACM ACSAC, 2015.

Improving the Security of Android Pattern Lock (2/2)

- The use of a strength meter.
 - The guessing entropy can be larger with meter support.

"On the Effectiveness of Pattern Lock Strength Meters: Measuring the Strength of Real World Pattern Locks," **ACM CHI, 2015.**

Policies for Patterns

Password selection policies can be used to avoid weak passwords.

Create your Google Account

One account is all you need Name First Last One free account gets you into everything Google. Choose your username @gmail.com I prefer to use my current email address Create a password Password strength: Take it all with Use at least 8 characters. Don't use a Confirm your password password from another site, or something Switch between devices, and pick up too obvious like your pet's name. Why? Birthday Year Month \$ Day Gender I am... \$ Mobile phone

Sungkyunkwan University (SKKU) Security Lab.

Cyber Security CRC – SAO Seminar Series 17

Research Question

Our work was motivated by the following research question:

"Can we design effective security policies for Android patterns to improve their security without significantly compromising their usability?"

Design Principles

- 1. Minimize additional memorability burden on users.
- 2. Keep the authentication time similar to the original Android pattern locks.
- 3. Make it easy to learn and use.
- 4. Avoid significant software or hardware changes.

Solution: SysPal

SysPal is a novel system-guided pattern lock scheme.

Hypothesis 1

• The security of SysPal patterns strengthens with the increase in the number of mandated points.

One mandated point

Two mandated points

Three mandated points

Hypothesis 2

• The memorability of SysPal patterns decreases with the increase in the number of mandated points.

One mandated point

Two mandated points

Three mandated points

Hypothesis 3

• A SysPal policy has statistically similar memorability to original Android patterns and *better security*.

Original Android

Two mandated points

Five Policies

• The number of randomly-selected mandated point(s) must be used once upon selecting a pattern.

Study Design: Pattern Setup

- First large-scale study was conducted using Amazon Mechanical Turk, recruiting **1,717** participants.
- We developed an Android application to evaluate the SysPal policies in a realistic setting.
- Participants were asked to select a pattern under one of the five policies (randomly assigned).

Study Design: Recall Tests

- Complete two remembrance training tasks.
- Complete a graphical puzzle to wipe out their shortterm memory [1].
- Conduct three recall tests after 5 minutes, 15 minutes, and 24 hours, respectively.
 - In each recall test, if a participant correctly draw his/her pattern within five chances, we regard that the participant passed the recall test.

[1] Atkinson et al., "Human memory: A proposed system and its control processes," The psychology of learning and motivation, vol. 2, 1968.

Recall Success Rate

	Original	1-Point	2-Point	3-Point	Random
1 st Test	382/384	326/331	340/342	320/326	276/334
	99.48%	98.49%	99.42%	98.16%	82.63%
2 nd Test	365/384	317/331	330/342	312/326	265/334
	95.05%	95.77%	96.49%	95.71%	79.34%
3 rd Test	278/384	232/331	252/342	231/326	169/334
	72.40%	70.09%	73.68%	70.86%	50.60%

Recall success rate for 2-Point is greater than

Original in the 2nd and 3rd test.

(corrected FET)

(# remaining participants) / (# initial participants)

Sungkyunkwan University (SKKU) Security Lab.

Cyber Security CRC – SAO Seminar Series 27

Authentication Time

Policy	1 st Test		2 nd .	Test	3 rd Test		
I Olicy	μ	σ	μ	σ	μ	σ	
Original	4.60	3.56	4.73	3.64	6.31	5.13	
1-Point	4.26	2.76	4.07	2.76	6.53	6.75	
2-Point	4.17	2.94	4.38	3.95	5.32	5.32	
3-Point	4.47	4.30	4.52	4.77	5.79	6.13	
Random	12.90	10.70	9.15	7.59	13.65	12.77	

There is **no statistically significant difference** between *Original* and all SysPal policies. (corrected two-tailed unpaired t-test)

 μ : mean, σ : standard deviation

Number of Attempts Made

Policy	1 st Test		2 nd .	Test	3 rd Test		
I Olicy	μ	σ	μ	σ	μ	σ	
Original	1.14	0.50	1.11	0.36	1.24	0.74	
1-Point	1.18	0.61	1.11	0.28	1.22	0.74	
2-Point	1.12	0.47	1.10	0.40	1.29	0.83	
3-Point	1.19	0.65	1.08	0.34	1.20	0.64	
Random	2.26	1.52	1.70	1.15	2.16	1.57	

Random participants drew their pattern twice on average. (corrected two-tailed unpaired t-test)

 μ : mean, σ : standard deviation

Measuring the Probability of Pattern Occurrence

- We analyzed the guessability of the collected patterns.
- We collected total 1,717 patterns. However, it is not sufficiently large to calculate guessability of all possible patterns.
- We estimated the probability of all possible pattern occurrences using an N-gram Markov model.

N-gram Markov Model

- How can we estimate the probability of a given pattern "1,2,3,6,9 ?"
- We can use an *N*-gram Markov model to estimate the probability of a pattern.

$$P(x_1, \dots, x_m) = P(x_1, \dots, x_{n-1}) \cdot \prod_{i=n}^m P(x_i | x_{i-n+1}, \dots, x_{i-1})$$

 For example, using the 3-gram Markov model, we can calculate P(1,2,3,6,9) as

 $P(1,2,3,6,9) = P(2|\$,1) \cdot P(3|1,2) \cdot P(6|2,3) \cdot P(9|3,6) \cdot P(@|6,9)$ $\frac{139}{440} \quad \frac{128}{169} \quad \frac{124}{170} \quad \frac{90}{148} \quad \frac{49}{131}$

≈ 0.039697552

Guessing Entropy

- We then compute the partial guessing entropy [1] for the distribution of all possible patterns.
- The patterns generated with the SysPal policies have significantly higher guessing entropy estimate than the original Android patterns.

Policy	α									
Тойсу	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Original	5.04	5.82	6.54	7.19	7.86	8.50	9.20	9.97	11.00	12.71
1-Point	7.54	8.19	8.67	9.16	9.67	10.21	10.82	11.57	12.44	13.67
2-Point	7.16	7.91	8.40	8.92	9.47	10.02	10.65	11.39	12.30	13.62
3-Point	6.95	7.81	8.52	9.12	9.69	10.29	10.96	11.71	12.59	13.79
Random	11.20	11.84	12.44	13.02	13.58	14.11	14.60	15.04	15.44	15.81
Random Patterns (U_{389112})	18.57	18.57	18.57	18.57	18.57	18.57	18.57	18.57	18.57	18.57
Real-world 4-digit PINs [17]	5.19	7.04	8.37	9.38	10.08	10.63	11.08	11.44	11.70	11.83
Random 4-digit PINs ($U_{ m 10000}$)	13.29	13.29	13.29	13.29	13.29	13.29	13.29	13.29	13.29	13.29
Real-world 6-digit PINs	10.71	13.32	14.03	14.50	14.92	15.36	15.86	16.49	17.14	17.53
Random 6-digit PINs ($U_{ m 1000000}$)	19.93	19.93	19.93	19.93	19.93	19.93	19.93	19.93	19.93	19.93

[1] Bonneau, J. The science of guessing: analyzing an anonymized corpus of 70 million passwords. In Proceedings of Security and Privacy (SP), IEEE (2012).

Security of Android Patterns

 <u>20% of the original Android patterns</u> can be successfully guessed within <u>10 guessing attempts</u>.

Pattern Cracking

- We developed a dictionary of the top 20 frequently used patterns based on the 3-gram Markov model.
- 32.55% of the o*riginal* Android patterns were successfully cracked within 20 guessing attempts.

	Original	1-Point	2-Point	3-Point	Random
Mean # of guessing attempts	5,492.97	3,803.01	2,993.18	3,740.18	47,445.51
Mean # of guessing attempts (≤ 20)	6.31	10.44	7.29	11.74	0.00
Mean % of cracked	32.55%	9.97%	9.36%	14.11%	0.00%
patterns (≤ 20)					

Statistically significant difference

(all p < 0.001, corrected FET)

Frequencies of the Points used as the Starting Point

- 65.3% of *Original* patterns started from the upper leftmost point.
- All SysPal policies also started from upper leftmost point.

Frequencies of the Points used as the Ending Point

• Ending point is biased toward the lower rightmost point among all policies.

No statistically significant difference between all SysPal policies and Original. (all p = 1.0, corrected FET)

Frequencies of the Segments used

• 1-Point seems more evenly distributed than Original.

Proportion of the Mandated Points used

- A majority of SysPal participants used a given mandated point as the starting point of their patterns.
 - 68.9% for 1-Point, 38.5% for 2-Point, 17.4% for 3-Point.
- 2-Point participants used 4th position frequently.
 - One of the mandated points could be used frequently as an ending point.

Security Improvements

 H_1 : The security of SysPal patterns strengthens with the increase in the number of mandated points

• The use of 3 mandated points is not helpful to improve the security of patterns.

Recall Success Rate and Memorability Effects

- H_2 : The memorability of SysPal patterns decreases with the increase in the number of mandated points
- The effects of increasing the number of mandated points is *unclear*.

Replacing the Original Android Policy

*H*₃: A SysPal policy that shows no statistically significant difference in memorability against the original Android

SysPal policies can potentially replace the current Android policy without compromising too much usability

Memorability % of cracked patterns

Free-Form Gesture Password

Unmatched Pass-Gesture

Matched Pass-Gesture

Many users select **easy to guess** PINs and patterns to **lock their smartphones**. Phone lock via **free-form pass-gestures** entered on the touchscreen may be **more secure**.

> "Gesture Authentication for Smartphones: Evaluation of Gesture Password Selection Policies," IEEE S&P, 2020.

Problems with Gestures

- Recognition is not explicit.
- Recognition should be determined based on a similarity measure.

Deployed on Amazon MTurk

2594 valid participants

~13000 final gestures collected

~20000 gestures logged

5-25 times larger than prior datasets

Gesture Discretization

- In theory, the gesture password space is not finite.
- To compute entropy, we need to discretize the password space of gesture passwords.

Finding the Optimal Model

- We constructed 570 different n-gram Markov models.
- We optimized angle and length classes.
- The optimal model has 10 angles, 3 lengths and large overlapped boundary.

Clustering-based Attack

- We developed a novel attack using gesture clustering results.
 - 1. Compute similarity scores between all gestures.
 - 2. Cluster those gestures into groups based on the computed similarity scores.
 - 3. Find the top 20 largest clusters.
 - 4. Create the gesture password dictionary by selecting the representative one from each of the top 20 largest cluster.

Dictionary of Gestures

We can crack about 22% of gesture passwords within 20 guesses.

Gesture Password Policies

Lexical Policy Words to inspire gestures

Draw your PASS-gesture

Use this word to inspire your PASSgesture

"shadow"

Blacklist Policy Block common gestures

Draw your PASS-gesture

You CANNOT use these gestures for your memorable PASS-gesture

Password cracking results

- Baseline policy: 23% cracking rate
- Lexical policy: 34% cracking rate
- Blacklist policy: 17% cracking rate
- Lexical + Blacklist (consolidated) policy: 15% cracking rate

Our <u>blacklist</u> and <u>consolidated</u> policies would improve the security of gesture passwords, while our lexical policy reduces it.

Conclusions

- User-chosen graphical passwords can be vulnerable to password guessing attacks.
- Addition of randomness can be helpful to improve the security of graphical password schemes without compromising the usability of those schemes.
- Compliance might be better than recommendation to prevent poor security practices.

Any questions?

Hyoungshick Kim hyoung@skku.edu

Sungkyunkwan University (SKKU) Security Lab.

Cyber Security CRC – SAO Seminar Series 52