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Abstract—Cooperative caching can unify storage across edge clouds and provide efficient delivery of popular contents under effective
content placement. However, the placement and delivery are non-trivial in cooperative caching due to the decentralized property of
edge clouds, as well as the temporal and spatial correlation of the placement. We propose a new distributed online learning approach
to jointly optimize content placement and delivery without the a-priori knowledge on file popularity and link availability. Content
placement and delivery can be asymptotically optimized in real-time by running distributed online learning at individual edge servers by
exploiting stochastic gradient descent (SGD). The proposed approach can allow operations at different timescales by integrating
mini-batch learning for farsighted content placement. The optimality loss, stemming from the different timescales, can asymptotically
reduce, as the SGD stepsize declines. Simulations confirm that the proposed approach outperforms existing techniques in terms of
cache hit ratio and cost effectiveness. Insights are shed on the optimal placement of popular contents.

Index Terms—Cooperative caching, distributed online learning, stochastic gradient descent, mini-batch learning
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1 INTRODUCTION

THE upgrades of network infrastructure are outpaced
by the increasingly great demand for data traffic and

bandwidth-hungry services, challenging network perfor-
mance and viability [1]. Smart caching can prefetch popular
contents to edge cloud during off-peak times, deliver the
contents directly from the network edge, alleviate conges-
tions of backbone network during peak hours, and reduce
the costs of file delivery [2], [3]. The edge cloud refers to the
network of edge servers spread in cities, e.g., alongside with
base stations (BSs) and including the BSs. The memory sizes
of the edge servers are comparatively limited (with regards
to the large number of contents to be cached). Cooperative
edge caching is important for the performance of the system
by unifying storage and memories across edge clouds to
overcome restrictions of limited storage per server [4], [5].

Cooperative edge caching is not trivial. The spatial and
temporal variations of random content request arrivals and
background traffic would hinder the acquisition of the a-
priori knowledge on file popularity and link availability in
practice. Nevertheless, given the large size of edge clouds,
centralized coordination is not effective and would undergo
high signaling delays and outdated network knowledge [6].
All this prevents the development of optimal online dis-
tributed solutions for cooperative smart caching.
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Moreover, in cooperative smart caching, content place-
ment and delivery are required to operate at different
timescales. This is because content placement can cause non-
negligible delays and cost for an edge server to retrieve
the file from the backbone and replace contents in its local
memories. It is practically important to avoid frequent cache
replacement in cooperative caching and hence frequent dis-
ruptions, resulting from the update of network knowledge
for request dispatching. The distributed joint optimization
of request dispatch, content delivery, and content placement
at different timescales has yet to be addressed in the litera-
ture [7]–[26].

In this paper, we propose a novel fully distributed online
learning approach of cooperative smart caching without the
a-priori knowledge on file popularity and link availability.
The content placement and delivery (i.e., the request dis-
patch, content delivery, and content placement) are jointly
optimized at different timescales. The key idea is that we
first minimize the time-average cost across infinite time
horizons, provided the content placement and delivery can
run at the same timescale. By exploiting stochastic gradient
descent (SGD), the asymptotically optimal placement and
delivery can be decoupled between edge servers and across
time slots, and achieved by distributed online learning
implemented at individual edge servers based on their
observations on neighbors.

Another important aspect is that we further diverge
the proposed distributed online learning with different
timescales for content placement and delivery. This is done
by integrating mini-batch learning into the distributed on-
line learning to achieve farsighted content placement. The
optimality loss, stemming from the different timescales, is
proved to asymptotically diminish, as the stepsize of SGD
decreases. The farsighted content placement is important
to mitigate the disruptions that frequent content placement
would cause to content delivery.

The major contributions of this work include:

Authorized licensed use limited to: CSIRO Information Technology Services. Downloaded on April 23,2020 at 06:36:39 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2020.2983924, IEEE
Transactions on Mobile Computing

2

• We propose an asymptotically optimal, distributed,
online learning approach to jointly optimize the con-
tent placement, request dispatch, and content deliv-
ery across the edge cloud. In contrast, the existing
techniques restricted any cooperative content deliv-
ery within only up to two hops [13]–[20], [24]–[27],
assumed instantaneous global view [28], or failed to
guarantee the (asymptotic) optimality [29].

• We integrate mini-batch learning in the proposed
online learning framework to enable farsighted con-
tent placement at a large timescale. The mini-batch
learning is important to avoid excessively frequent
replacement of cached files and, subsequently, sig-
nificant growth of the cache replacement cost (which
is typical in the existing works [24]–[26] that opti-
mized content delivery and replacement at the same
timescale).

• We prove that the proposed distributed online learn-
ing approach (with the mini-batch learning for far-
sighted content placement) is asymptotically opti-
mal. Such optimality has not been established in the
literature, except for centralized learning [24]–[26] or
for content delivery only at the short timescale [29].

Extensive simulations demonstrate the asymptotic optimal-
ity and the gains of our technique in cache hit ratio and
cost effectiveness (i.e., the caching profit against backbone
delivery) over existing techniques. Interesting insights are
also shed that the probability of the optimal content place-
ment matches the file popularity under different popularity
distributions in the case where each edge server can cache
a file. Mismatches can arise when local cache can store
multiple files, since cooperative caching can leverage the
memories across an edge cloud to efficiently store popular
files without sacrificing the cache hit ratio of the files.

Ideally, the centralized approach could have a global
network view to improve prediction accuracy. However,
the global view can hardly be timely (or instantaneous) as
the network size scales under the non-negligible multi-hop
signaling delays [6]. Due to the outdated global view, the
performance of the centralized approach would be compro-
mised in practice. The proposed distributed online learning
approach can operate without the global network view, but
still asymptotically achieve the prediction accuracy which
the centralized learning would achieve under the ideal
setting with the instantaneous global view.

The remainder of this paper is arranged as follows. Ex-
isting studies are summarized in Section 2, and the system
model is presented in Section 3. The new distributed online
learning approach is articulated in Section 4. In Section 5,
the mini-batch learning is integrated into the proposed
distributed online learning to allow operations at different
timescales for content placement and delivery. Section 6
demonstrates simulation results, followed by conclusions in
Section 7.

2 RELATED WORK

2.1 Content Placement and Delivery in Edge Caching

By assuming that the decisions of content placement are
known in prior, the delivery of contents has been studied

in wireless and wired networks [7]–[12]. In [7]–[9], the local
memories of the access points were exploited to increase
the throughput of wireless system with multicast and co-
operative beamforming. In [10]–[12], cache-aware routing
was designed for minimizing the cost of content delivery
through the network backbone. These approaches were
based on offline, centralized optimizations, and unsuitable
for cooperative smart caching in edge cloud, given the sheer
network scale and multi-hop signaling delays.

In [13]–[20], cooperative content placement was stud-
ied under the assumption of perfect knowledge on file
popularity and link availability. In [13]–[16], considering
the typical hierarchical structure of edge networks, the in-
tier and cross-tier content placement was solved by game
theory [15], integer programming [13], [14], or analyzing
the content popularity [16]. In [17], caching, routing, and
channel allocation were jointly optimized to maximize the
sum rate of a multi-cell system by exploiting a column
generation method. In [18], [19], layered video caching
and transcoding were jointly optimized by using offline
integer programming techniques in a centralized manner.
In [20], the problem of jointly optimizing content routing
and placement was NP-complete, and a heuristic algorithm
was proposed to reach (1 − 1/e) of the optimum. Howev-
er, the perfect network knowledge for offline optimization
in [13]–[20] is not available given the stochasticity of request
arrivals and link availability.

In light of Gibbs sampling, a sequential content update
strategy was proposed in [27] to minimize the cost of down-
loading files from backhaul in densely deployed cellular
networks, where the BSs have overlapping coverage areas
and the user can select one of its nearby BSs to retrieve its
requested file. The strategy was proved to be asymptotically
optimal in both the presence and absence of the knowledge
on file popularity. The scenario in [27] is substantially dif-
ferent from the multi-hop cooperative edge caching studied
in this paper where multi-hop request dispatch and content
delivery require distinct and non-trivial designs. In [28], a
real-time caching algorithm was proposed to minimize the
overall cost of content providers in a cooperative multi-cell
network, where the requested files at a BS can be retrieved
from its local memories, the other BSs, or the network
backbone. The problem was cast as integer linear program-
ming with NP-completeness. However, the algorithm in [28]
would require the instantaneous global view of the network
at a centralized controller, and would hardly be scalable in
large-scale networks where the instantaneous global view
cannot be available.

2.2 Applications of SGD in Edge Caching

As the generalization of the celebrated Lyapunov optimiza-
tion, SGD can decouple a stochastic time-varying system
across different time slots and achieve asymptotic optimal-
ity. SGD can be applied to edge intelligence [30], fog com-
puting [6], [31]–[34], and software-defined networking [35].

SGD (or Lyapunov optimization) has also been applied
for the content placement in edge caching under the multi-
user single-cell network [22], [23] or hierarchical network-
s [24]–[26]. In [22] and [23], video caching, transcoding and
wireless transmission were jointly optimized for the profit
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Fig. 1. An illustration of the proposed cooperative edge caching [29].
The edge servers retrieve data from the backbone (core network) for
content replacement during off-peak time (at a large timescale), and the
cooperative data delivery between the servers happens from time to
time (at a short timescale).

of video caching in a single-cell network. By exploiting
the computing resources of edge servers, the high-quality
video segments are online transcoded to the user-requested
quality to save the storage of caching multi-resolution copies
of the same video [23]. In [24] and [25], considering a
two-tier network, cache rental and placement were jointly
optimized to achieve the maximum profit of the content
provider. In [26], the joint optimization of content placement
and delivery was proposed for maximizing the throughput
of a three-tier network. These approaches considered only a
single server [22], [23] or limited content delivery within two
hops [24]–[26], and cannot scale to the cooperative smart
caching with multi-hop content delivery in this paper.

In our recent work [29], a distributed online learning
technique was proposed to optimize only the request dis-
patch and content delivery, and establish profitable caching
regions in the edge cloud. Only a single timescale was con-
sidered. Cooperations could only take place within the prof-
itable caching regions. Despite that the profitable caching
regions could operate in conjunction with the popular Least
Frequently Used (LFU) or Least Recently Used (LRU) con-
tent replacement strategies, the algorithm developed in [29]
did not guarantee the optimality. In contrast, the new ap-
proach proposed in this paper jointly optimizes the content
placement together with the request dispatch and content
delivery across the edge cloud. The new approach integrates
mini-batch learning at a large timescale to plan content
placement farsightedly and avoid excessively frequent re-
placement of cached files. Moreover, the proposed approach
is rigorously proved to be asymptotically optimal.

3 SYSTEM MODEL

Fig. 1 shows the smart edge caching network of N number
of edge servers with data memories. Let N = {1, · · · , N}
collect the indices to the N edge servers, and F =
{1, · · · , F} collect the files. Without loss of generality, the
files are pre-partitioned (e.g., into blocks in real systems) to
have unit size. Each edge server caches some of the files

TABLE 1
Definitions of Notations

Notation Definition

F Set of files
N Set of edge servers
E Set of inter-server links
Cij Capacity of link (i, j)
ζij Unit cost of content delivery over link (i, j)
Qs

i,f Request queue of server i for file f from server i
Ds

i Data queue of server i destined for server s
Ri,f Size of requests for file f at server i
ri,f Admission of requests for file f at server i
ζi,f Unit cost for server i of retrieving file f from backbone
qsij,f Dispatch of requests from server s from servers i to j
dsij Delivery of the file destined for server s via link (i, j)

bsi,f Grant of requests from server s for file f at server i
Fi Maximal request grant of server i per slot
ci,f Caching decision of file f for server i
ε Stepsize of SGD
T The interval of content refreshment in Section 5

based on the size of its local memories. The requests for a
file received by a server is either delivered/satisfied from
the backbone or the other edge servers which store the
file in its local memory. The network operates in a slotted
structure. The duration of a time slot can range from 1ms
(e.g., the length of TTI in LTE) to tens of milliseconds. Table 1
summarizes the notations in this paper, where ·(t) to specify
time slot t of the notation is suppressed for brevity.

The edge servers are connected through shared or ded-
icated network links. Let G = {N,E} be the network
topology of the edge cloud, where N and E are the sets
of edge servers and inter-server links in the network, re-
spectively. For example, the inter-server links can be X2
interfaces (between BSs) in 4G networks. The capacity of the
network links ranges typically from 1 Gbps (e.g., Ethernet
category 6 cable) to 10 Gbps (e.g., optical fiber), and can
support cooperative data delivery between the edge servers.
The capacity of the links does not change during the slot,
and can only vary between different slots given the random
background traffic. Cij(t) ≤ Cmax

ij is the link capacity for
bi-directional data transmissions over link (i, j) at slot t. At
time slot t, ζi,f and ζij(t) are the costs of delivering unit
size of data (for file f ) from the network backbone to server
i and over link (i, j), respectively.

Ri,f (t) denotes the amount of requests for the f -th file
captured by server i. It specifies the amount of data to be
delivered to the requested user at slot t. Without the a-priori
knowledge on the file popularity1, Ri,f (t) is assumed to be
a stochastic process satisfying Ri,f (t) ≤ Rmax

i,f . Let ri,f (t)
be the size of admitted requests for the f -th file at server i

1. The content popularity can vary drastically between the edge
servers. The a-priori knowledge of the content popularity at individual
edge servers may not be available in practice. This is because the
content popularity needs to be evaluated based on a large number of
(or a set of pre-known) users and their requests. For an edge server
(e.g., a BS), the number of users in its coverage is typically not big
enough (e.g., up to a few hundred) to provide an unbiased estimation
of the content popularity. Moreover, the popularity can even change
over time. Learning online the variation of content popularity among
the edge servers and the changes over time is expected to be effective,
as compared to offline (or posteriori) measurement.
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during slot t to be retrieved from other edge servers within
the edge cloud. The remainder of the request,

(
Ri,f (t) −

ri,f (t)
)
, is delivered from the network backbone. We have

0 ≤ ri,f (t) ≤ Ri,f (t), ∀i, f, t. (1)

At each edge server, NF queues are used to store the
requests for the F files received by N edge servers, and
another N queues are required for the files to be delivered
to the users in the coverage of N edge servers. To facilitate
the retrieval of F files to N servers requires the placement
of N(F + 1) queues at each edge server [6], [31], [32].

Let Qsi,f (t) and Ds
i (t) be the queue backlogs at serv-

er i at slot t of the requests from server s for file f
and the files destined for server s, respectively. Q(t) =
{Qsi,f (t), Ds

i (t),∀i, f, s}. The following constraints need to
be satisfied:∑

s∈N
[dsij(t) + dsji(t)] ≤ Cij(t), ∀(i, j), t; (2a)∑

s∈N,f∈F
[qsij,f (t) + qsji,f (t)] ≤ Cij(t), ∀(i, j), t; (2b)

qsij,f (t) ≥ 0, dsij(t) ≥ 0, ∀i, j, f, s, t. (2c)

Here, qsij,f (t) and dsij(t) are the sizes of the requests for file
f to be dispatched and the files to be delivered, respectively,
from servers i to j during slot t. The dispatch of requests
between edge servers in (2b) only involves the transmission
of a short packet2, which is negligible compared to the
delivery of contents/files of up to Gigabytes in (2a). As a
result, constraint (2a) captures the capacity (or data rate) of
link (i, j), and constraint (2b) is to avoid the dispatch of
too many requests and stop the requested files from being
returned to congest link (i, j).

Let bsi,f (t) be the size of requests for file f from server
s and served at edge server i during the t-th slot, and
Fi(t) ≤ Fmax denote the maximum of request grant during
slot t at the server. Fi(t) is time-varying given the random
background services at the edge servers. ci,f (t) ∈ {0, 1} is
the content placement decisions of file f at edge server i at
slot t. Server i caches the f -th file in its local memory at slot
t, if ci,f (t) = 1. The content placement and request granting
need to satisfy∑

f∈F,s∈N
bsi,f (t) ≤ Fi(t), ∀i, t; (3a)

0 ≤ bsi,f (t) ≤ ci,f (t)Fi(t), ∀i, f, s, t, (3b)

ci,f (t) ∈ {0, 1}, ∀i, f, t, (3c)∑
f∈F

ci,f (t) ≤Mi, ∀i, t, (3d)

where (3b) indicates that server i serves (or satisfies) the
requests for the files in its local memory. Constraint (3d)
specifies that each edge server only has a finite memory and
edge server i can cache up to Mi files in its local memory.

Note that the content placement needs to be carried
out at much longer intervals than the request dispatch and
content delivery. This is because content placement can
cause non-negligible delays and cost for an edge server to
retrieve the file from the backbone and replace the contents
in its local memories. It is of practical importance to avoid

2. For example, a 4-byte unsigned integer (e.g., the uint32 data type in
C++ that can represent 232 integers within [0,4294967295]) is sufficient
to represent the queue backlogs of up to 4.3GB.

frequent cache replacement in cooperative caching, and
hence the substantial increase of the costs for collecting files
from the backbone and replacing the local memory.

The backlog of request queue Qsi,f (t) is updated by

Qsi,f (t+ 1) = [Qsi,f (t)−
∑

j∈N
qsij,f (t)− bsi,f (t)]+

+
∑

j∈N
qsji,f (t) + rsi,f (t).

(4)

where [·]+ = max{·, 0}, rii,f (t) = ri,f (t), and rsi,f (t) =
0, ∀s 6= i. Here, [Qsi,f (t)−

∑
j∈N qsij,f (t)−bsi,f (t)]+ is the size

of requests in Qsi,f by slot t, after granting and dispatching
part of the requests at server i. The second and third terms
are the arrivals of requests from the users or dispatched
from other servers.

The backlog of data queue Ds
i (t) is updated by

Ds
i (t+ 1) = [Ds

i (t)−
∑

j∈N
dsij(t)]

+

+
∑

j∈N
dsji(t) +

∑
f∈F

bsi,f (t), ∀s 6= i,
(5)

where Di
i(t) = 0, as server i acts as the sink of the files.

4 DISTRIBUTED ONLINE LEARNING OF COOPERA-
TIVE SMART CACHING

This section presents the proposed distributed online learn-
ing to asymptotically optimize content placement, request
dispatch, and content delivery, provided that the content
placement can be implemented per time slot. As discussed
in Section 3, the content placement needs to be implemented
at large time intervals to avoid frequent cache replacement
and hence the substantially increasing cost of cache replace-
ment. Section 5 will show that the proposed approach can be
integrated with mini-batch learning to facilitate farsighted
content placement without compromising the optimality.

4.1 Problem Statement and Reformulation
Cost is taken as the generic measure of smart edge caching.
Let Ψ(xt) denote the cost in edge caching, as given by

Ψ(xt) =
∑
i,j∈N

ψij(t) +
∑

i∈N,f∈F
ζi,f (Ri,f (t)− ri,f (t)), (6)

where xt = {ci,f (t), bsi,f (t), qsij,f (t), dsij(t), ri,f (t),∀i, j, f, s}
collects the variables of slot t. Here, ζi,f (Ri,f (t) − ri,f (t))
and ψij(t) = ζij(t)

∑
s∈N dsij(t) are the costs of retrieving

file f from the network backbone to server i and delivering
files from servers i to j at slot t, respectively.

The stability of the system is written as

Qsi,f (t) <∞, Ds
i (t) <∞, ∀i, f, s, (7)

where X(t) = limT→∞
1
T

∑T−1
τ=0 E[X(τ)] is the time-

average of a random process X(t).
We minimize the time-average cost of smart caching, i.e.,

Ψ(xt), under the system stability constraint (7) without the
priori knowledge of request arrivals and link availability.
Let X = {xt,∀t} be the set of all the variables of content
delivery, request dispatch, and content placement, across all
time slots. The problem can be given by

Ψ∗ = min
X

Ψ(xt)

s.t. (1) – (5), (7), ∀t.
(8)
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According to queuing theory [36], the system stability
constraint (7) specifies that the time-average input rates of
the queues cannot exceed the corresponding time-average
output rates of the queues. (7) can be rewritten as∑

j∈N
(qsji,f (t)− qsij,f (t)) + rsi,f (t)− bsi,f (t) ≤ 0, ∀i, f, s;∑

j∈N
(dsji(t)− dsij(t)) +

∑
f∈F

bsi,f (t) ≤ 0, ∀i, s.
(9)

Problem (8) can be reformulated as

Ψ∗ = min
X

Ψ(xt)

s.t. (1) – (3), (9), ∀t.
(10)

Given the time-average objective and constraint, i.e., Ψ(xt)
and (9), the offline optimum to (10) requires the knowledge
of the network dynamics of request arrivals and link avail-
ability over an infinite time horizon, which is not available
in practice. We proceed to exploit SGD of machine learning
to learn the optimal solution online from the observed
network dynamics at each edge server over time. The details
are provided in the following.

4.2 SGD-based Online Learning

SGD is an established method in machine learning widely
applied in logistic regression and neural networks [37].
SGD is effective where exact gradients are computationally
expensive given the large size of datasets (or the prevalent
randomness in this paper). As a result, stochastic gradient
can be used to approximate the exact gradient based on
a subset of sampled datasets (or the observed network
dynamics at each time slot) over time.

By taking SGD, problem (10) can be decoupled between
time slots, i.e., eliminate (9), and reformulated into solving
(11) at each slot t:

max
xt

α(rt) + β(qt) + γ(dt) + η(bt, ct)

s.t. (1), (2), (3).
(11)

The reformulation is achieved by associating (9) with La-
grange multipliers and applying SGD to update the mul-
tipliers at each time slot, with the details in Appendix
A. In (11), rt = {ri,f (t),∀i, f}, bt = {bsi,f (t),∀i, f, s},
qt = {qsij,f (t),∀i, j, f, s}, dt = {dsij(t),∀i, j, s}, and ct =
{ci,f (t),∀i, f} are the decisions of admission, request grant,
request dispatch, content delivery, and content placement at
slot t, respectively. We have

α(rt) =
∑

i∈N,f∈F
[ζi,f − εQii,f (t)]ri,f (t); (12a)

β(qt) = ε
∑

i,j,s∈N,f∈F
Qsi,f (t)(qsij,f (t)− qsji,f (t)); (12b)

γ(dt) = ε
∑

i,j,s∈N
Ds
i (t)(d

s
ij(t)− dsji(t))− ζij(t)dsij(t);

(12c)

η(bt, ct) = ε
∑

i,s∈N,f∈F
bsi,f (t)ci,f (t)(Qsi,f (t)−Ds

i (t));

(12d)

and ε is the stepsize of SGD. The Lagrange multipliers can
be interpreted as the product of the stepsize and the queue

backlogs given the stepsize ε; and are suppressed in (12); see
Appendix A for details.

We can see in (11) that the optimization variables of rt,
bt, qt, dt, and ct are decoupled both in the objective and
constraints. Moreover, the decisions on content placement
ct and request admission rt can be decoupled between
different edge servers, and the decisions of request dispatch
qt and content delivery dt can be decoupled between
links. Problem (11) can be decomposed to the problems
of optimizing request admission, request dispatch, content
delivery, as well as request grant and content placement, as
respectively given by (13a), (13b), (13c) and (13d):

max
ri,f (t)

αi,f (t)ri,f (t), s.t. (1); (13a)

max
r̃ij(t)

∑
s∈N,f∈F

βsij,f (t)qsij,f (t) + βsji,f (t)qsji,f (t),

s.t. (2b), (2c);
(13b)

max
d̃ij(t)

∑
s∈N

γsij(t)d
s
ij(t) + γsji(t)d

s
ji(t),

s.t. (2a), (2c);
(13c)

max
bi(t),ci(t)

∑
f∈F

ηsi,f (t)bsi,f (t)ci,f (t), s.t. (3); (13d)

where αi,f (t) = ζi,f − εQii,f (t), βsij,f (t) = ε(Qsi,f (t) −
Qsj,f (t)), γsij(t) = ε[Ds

i (t) − Ds
j (t)] − ζij(t), and ηsi,f (t) =

ε(Qsi,f (t) − Ds
i (t)). r̃ij(t) = {qsij,f (t), qsji,f (t),∀f, s} and

d̃ij(t) = {dsij(t), dsji(t),∀s} collect the decisions of request
dispatch and content delivery on link (i, j) at slot t, respec-
tively.

Here, (13a) is linear programming of maximizing the
weighted sum of the variables [38]. Its optimal solution is
as follows.

ri,f (t) =

{
Ri,f (t), if Qii,f (t) < ζi,f/ε;
0, otherwise.

(14)

Problems (13b) and (13c) are also linear programming,
and their optimal solutions can be obtained by evalu-
ating βsij,f (t), βsji,f (t), γsij(t) and γsji(t). In specific, for
(13b), if maxf,s{βsij,f (t)} < 0 or maxf,s{βsij,f (t)} <
maxf,s{βsji,f (t)}, we have qsij,f (t) = 0. Otherwise, the
optimal size of dispatched requests is written as

qsij,f (t) =

{
Cij(t), if (f, s) = arg maxf,s β

s
ij,f (t);

0, otherwise.
(15a)

For (13c), if maxs{γsij(t)} < 0 or maxs{γsij(t)} <
maxs{γsji(t)}, dsij(t) = 0. Otherwise, the optimal size of
content delivery can be given by

dsij(t) =

{
Cij(t), if s = arg maxs γ

s
ij(t);

0, otherwise. (15b)

Lastly, (13d) is a mixed-integer linear program, and
can be decomposed to two dependent subproblems: (a)
optimizing request grant bi(t) given the content placement;
and (b) optimizing the content placement ci(t) based on
the optimal request grant of the former subproblem. Given
content placement ci,f (t), (13d) is linear programming. If
maxf,s{ηsi,f (t)ci,f (t)} ≤ 0, bsi,f (t) = 0. Otherwise, the
optimal solution is

bsi,f (t) =

{
Fi(t), if (f, s) = arg max

f,s
ηsi,f (t)ci,f (t);

0, otherwise;
(16)
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where only the request queue with the most urgency is
selected in (16). As a result, edge server i decides to place
file f with the most urgency at the slot, i.e.,

ci,f (t) = 1, if f = arg maxf,s η
s
i,f (t). (17)

It is noted that (14) indicates a request is accepted or re-
jected in whole to preserve the integrity of a file. In (15) and
(16), the files are implicitly assumed to be dividable. This
is because Cij(t) and Fi(t) may not accommodate integer
numbers of files. In this case, (15) and (16) are rounded to
the largest integer numbers of files. The rounding of (15)
and (16) also preserves the asymptotic optimality of our
approach, since the optimality gap (or the difference to the
optimal solution in the case where the files can be dividable)
is upper bounded by Cij(t) and Fi(t) and can asymptot-
ically diminish as ε → 0. Nevertheless, as will be shown
shortly, the continuous results of (15) and (16) can improve
the tractability of analyzing the asymptotic optimality and
the instantaneous upper bounds of the queues.

4.3 Asymptotic Optimality and Tradeoff
We proceed to analyze the optimality of the new fully
distributed online learning approach. Let Ψ̃∗(xt) be the cost
achieved by the proposed approach, and Ψ∗ be the optimum
to (8) (which needs to be minimized offline based on the
priori knowledge of network dynamics over an infinite
time horizon). We can establish the typical [O(1/ε),O(ε)]-
tradeoff of SGD in the following theorems by exploiting
Lyapunov techniques [39].

Theorem 1. The proposed approach is asymptotically optimal,
i.e., the gap between Ψ̃∗(xt) and Ψ∗ can asymptotically diminish
as ε→ 0 decreases, as given by

Ψ̃∗(xt)−Ψ∗ ≤ εU , (18)

where U = 1
2

{∑
i∈N

[∑
f∈FR

max
i,f + 2

∑
j∈N Cmax

ij +

2NFmax
]}2

is a constant.

Proof. See Appendix B.

Theorem 2. The queue backlogs are upper bounded by Qsf,max

and Ds
max, such that Qsi,f (t) ≤ Qsf,max and Ds

i (t) ≤
Ds

max, ∀i, f, s, t. The upper bounds Qsf,max and Ds
max can be

given by

Qsf,max =
βs,f
ε

+Rmax
s,f + θs; (19a)

Ds
max = maxf

{
Rmax
s,f +

βs,f
ε

}
+ 2θs + Fmax; (19b)

where θs =
∑
j∈Ns

Cmax
js is the maximum arrivals of requests

and files at edge server s. Ns is the set of the immediate neighbors
of server s.

Proof. See Appendix C.

It is important to reduce content retrieval latency and
backhaul usage (which are tightly coupled). The perfor-
mance metric in (6) captures both the cost of backhaul usage
(when a content request is not cached in the edge cloud
and must be retrieved from the backbone) and the cost of
edge content delivery (when the content can be retrieved
from the servers in the edge cloud). Here, “cost” is a generic

t (time slot)0 t=T t=2T

Per-slot operations of request dispatch, 

admission and content delivery

Farsighted content placement at a T-slot interval

T=5t=1

Fig. 2. An illustrative example of two-timescale operations for content
placement and delivery, where T = 5 time slots.

measure to evaluate the performance of a system, and can
be translated to monetary cost or energy consumption. For
example,

∑
i,f ζi,f (Ri,f (t) − ri,f (t)) in (6) is the energy

consumption of data retrieval over backhaul, where ζi,f
is the energy of retrieving a unit size of file f from the
backbone to edge server i.

∑
i,f ζi,f (Ri,f (t) − ri,f (t)) in

(6) can also be translated to the consumption of backhaul
bandwidth resources, if we set ζi,f = 1. On the other
hand, the content retrieval latency can be measured by the
backlogs of unsatisfied content requests, according to Little’s
Law [36]. Captured in (7), the backlogs are also part of
problem (8) and stabilized by the proposed approach. As
shown in Theorem 2, by adjusting the SGD stepsize ε, we
can balance between the content retrieval cost (accounting
for the backhaul usage and the delivery of cached contents)
and the content retrieval latency in the proposed approach.

5 TWO-TIMESCALE MINI-BATCH LEARNING FOR
FARSIGHTED CONTENT PLACEMENT

This section considers a practical scenario where content
placement needs to be conducted at a T -slot interval, as
opposed to Section 4. Replacing cached files can incur
overhead, i.e., for retrieving new files from the network
backbone and updating the files in the local memories of the
edge servers. The cost can increase substantially if cached
files are excessively frequently replaced at the edge servers.
As shown in Fig. 2, by running the proposed two-timescale
mini-batch learning for farsighted content placement, the
cached files are only replaced every T time slots (at slot
t = mT , m = 1, 2, · · · ). The decisions of request dispatch,
admission and content delivery are made at each time slot.
As a result, the cache replacement cost of the network is
inversely proportional to the value of T .

5.1 Farsighted Content Placement via Mini-Batch
Learning

The two-timescale learning and optimization of content
caching and delivery can operate as follows:

• Content placement at large time intervals: At slot t =
mT , each edge server i decides the content place-
ment ci(t) by maximizing the expectation of the
overall objective (13d) across t = {mT, · · · , (m +
1)T − 1}, i.e.,

max
{
E
[ (m+1)T−1∑

t=mT

∑
f∈F

ηsi,f (t)bsi,f (t)ci,f (t)|ωt
]}

, s.t. (3).

(20)
• Optimization of request dispatch, admission and content

delivery per time slot: At each slot t = mT + τ ,
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edge server i admits/dispatches requests and de-
livers contents based on (14) and (15), and grants
the requests by (16), given the decisions of content
placement in problem (20).

Note that the optimal content placement of (20) requires
the explicit a-priori knowledge on ωt across {mT, · · · , (m+
1)T − 1}, including future requests and link availability,
which is not practical in smart edge caching. We now derive
the content placement by approximating the future queue
backlogs (or Lagrange multipliers) as the current backlogs
as of slot t = mT :

Q̂si,f (mT + τ) = Qsi,f (mT );

D̂s
i (mT + τ) = Ds

i (mT ),
(21)

where τ ∈ {0, · · · , T − 1}, and Q̂si,f (t) and D̂s
i (t) are the

approximate backlogs of the queues.
Here, (21) is typically adopted in the mini-batch learning

of SGD in machine learning [40]. In specific, the stochastic
gradients are summed up over a mini-batch (or the T -slot
time window in this paper) and updated less frequently (at
the interval of the size of a mini-batch). This helps reduce the
variance of SGD resulting from the randomness of network
dynamics.

By taking the approximation of (21), problem (20) can
be reformulated as a sequence of per-slot subproblem-
s; see (13d). Edge server i selects file f with the max-
imum urgency η̂i,f (t) = maxs∈N{ηsi,f (t)} to be placed,
as articulated in Section 4. Due to the randomness across
{mT, · · · , (m + 1)T − 1}, edge server i would cache the
Mi files with the highest urgency η̂i,f (t) among all the files
f ∈ F. The urgency of the files η̂i,f (t) are only related
to the queue backlogs (or Lagrange multipliers) without
the a-priori statistical information of file popularity. This
is achieved by SGD and mini-batch learning, where the
Lagrange multipliers adapt to the pattern of randomness
(request arrivals and link availability) and gradually con-
verge to the optimum.

Fig. 3 shows the flowchart of the proposed approach
at an edge server at slot t. Recall that the proposed ap-
proach is fully distributed, and all the edge servers run
identical processes. Take edge server i for an example.
The proposed approach optimizes the decisions on content
placement and on request dispatch and content delivery at
different timescales. Specifically, at each slot t, edge server i
collects its local queue backlogs and the conditions of its
connected links, exchanges the information of the queue
backlogs with its neighbors (e.g., server j), and decides the
optimal request admission, grant and dispatch, and content
delivery based on (14)–(16). At every T -slot interval (i.e.,
if t = mT , m = 1, 2, · · · ), edge server i optimizes the
content placement farsightedly by approximating the future
backlogs according to (21) and replacing the files in its local
memory, as stated in Section 5.1.

Note that the neighboring servers are expected to ex-
change (or synchronize) the information on their queue
backlogs every time slot to compare their queue differences
for the optimal decisions. Such signaling overhead of ex-
changing a 4-byte unsigned integer (which is sufficient to
represent the queue backlogs of up to 4.3GB) is negligible as

Acquire its local queue 

backlogs and the 

conditions (costs) of 

connected links.

Edge 

Server i

Edge 

Server j

Exchange the information

on the queue backlogs of 

connected neighboring servers.

Decide the optimal 

request admission, 

grant, dispatch, and 

content delivery based 

on (14)-(16).

At a T-slot 

interval

At each 

time slot

Approximate the 

future queue backlogs 

according to (21).

Place the Mi files with 

the highest urgency 

in its local memory; 

see Section 5.1.

Fig. 3. The flowchart of the proposed approach at an edge server.

compared to the capacity of the network links between the
edge servers.

The proposed distributed online learning algorithm
learns the file popularity and link availability in a distribut-
ed manner at each edge server. Given the learned knowl-
edge, the proposed approach can jointly and asymptotically
optimize the operations of content placement and delivery
of cooperative caching. Both the file popularity and link
availability are critical for the effectiveness of a cooperative
caching algorithm, but they are hardly available in prior at
the edge servers in practice, due to background traffic and
user behaviors. The file popularity and link availability may
be predicted in a centralized manner (e.g., by using deep
neural networks), provided an instantaneous global view
of the complete network. Unfortunately, the instantaneous
global view of the network is barely available in practice,
given the sheer size of the edge cloud and the non-negligible
signaling delays. The proposed distributed online learning
approach has a low time-complexity and is particularly
designed to operate in real-time at individual resource-
restrictive edge servers, as will be discussed in Section 5.2.

5.2 Complexity Analysis

The time-complexity of the approach is O(NFδi) per edge
server at the short timescale (per time slot) for optimal
request dispatch, admission, and content delivery, and is
O(F logF ) per edge server at the large timescale (per M
time slots) for content placement. Here, δi is the degree of
edge server i (or in other words, the number of immediate
neighbors of the edge server).

At the short timescale (per time slot), the decisions of
request dispatch, admission, and content delivery are opti-
mized at each edge server in a distributed manner, accord-
ing to (14)–(16). The time-complexity of solving (14)–(16)
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depends on the complexity of evaluating and comparing
the cost-effectiveness measures of αi,f (t), βsij,f (t), γsij(t) and
ηsi,f (t). Each measure can be calculated in O(1) time. Each
edge server i needs to acquire the measures for each file f ,
each requested server s, and all its immediate neighbors j
in a total of O(NFδi) time. Comparing the measures and
generating the optimal decisions, i.e., executing (14), (15)
and (16), would require O(F ), O(NFδi), and O(NF ) time,
respectively. The overall time-complexity of optimal request
dispatch, admission, and content delivery is O(NFδi) per
time slot per edge server i.

At the large timescale (every T time slots), by using the
approximation (21), the T -slot content placement problem
(20) can be reduced to (13d), where the optimal solution
for edge server i is to cache the Mi most urgent files in
its storage. This needs to sort F files in the descending
order of η̂i,f (t), and undergoes O(F logF ) time-complexity
by using the quick-sort algorithm [41]. Therefore, the time-
complexity of the optimal content placement at the large
timescale is O(F logF ).

The time-complexity (or runtime) of the new approach
is only linear to the numbers of edge servers and files at the
short timescale and sub-quadratic to the number of files at
the large timescale. As a result, the new distributed online
learning technique can be optimized in real-time.

5.3 Performance Analysis
This section proves that the optimality loss resulting from
the approximation of (21) asymptotically disappears as the
stepsize ε→ 0. For analytical tractability, an upper bound of
the optimality loss is analyzed, under the assumption that
the decisions of request dispatch, admission, and content
delivery are optimized at a T -slot interval by extending the
approximation of (21) to (14)-(16). This provides the lower
bound of the performance offered by the two-timescale
distributed learning.

Lemma 1. The differences between the approximate and actual
queue backlogs in (21) are upper bounded by

|Qsi,f (t)− Q̂si,f (t)| ≤ Tδi; (22a)

|Ds
i (t)− D̂s

i (t)| ≤ Tδi, (22b)

where δi = maxf∈F{Fmax
i +

∑
j∈N Cmax

ji , Rmax
i,f +∑

j∈N Cmax
ij } is a constant.

Proof. We can see from (21) that Q̂si,f (t) = Qsi,f (t−τ), where
τ ∈ {0, · · · , T − 1}. According to the queue dynamics (4),
we have |Qsi,f (t + 1) − Qsi,f (t)| ≤ δi. δi is the maximum
difference of Qsi,f (t) between consecutive time slots. As
a result, |Qsi,f (t) − Q̂si,f (t)| = |Qsi,f (t) − Qsi,f (t − τ)| =

|
∑t−1
t0=t−τ Q

s
i,f (t0 + 1) − Qsi,f (t0)|. By applying |a + b| ≤

|a| + |b|, |Qsi,f (t) − Q̂si,f (t)| ≤ τδi ≤ Tδi in (22a) is proved.
Likewise, (22b) can be proved.

Let α̂i,f (t), β̂sij,f (t), γ̂sij(t) and η̂si,f (t) denote the approx-
imate parameters in (13) under the approximation of (21) for
farsighted content placement.

Lemma 2. The differences between the actual and approximate
parameters in (13) are upper bounded by

|α̂i,f (t)− αi,f (t)| ≤ εTδi; (23a)

|β̂sij,f (t)− βsij,f (t)| ≤ εT (δi + δj); (23b)

|γ̂sij(t)− γsij(t)| ≤ εT (δi + δj); (23c)

|η̂si,f (t)− ηsi,f (t)| ≤ 2εTδi. (23d)

Proof. According to (12), we have |α̂i,f (t) − αi,f (t)| =
ε|Qsi,f (t)−Q̂si,f (t)|. As a result, we can prove (23a) according
to Lemma 1.

For (23b), |β̂sij,f (t) − βsij,f (t)| = ε|[Q̂si,f (t) − Qsi,f (t)] −
[Q̂sj,f (t) − Qsj,f (t)]|. By applying |a − b| ≤ |a| + |b|, we can
obtain

|β̂sij,f (t)−βsij,f (t)| ≤ ε[|Q̂si,f (t)−Qsi,f (t)|+|Q̂sj,f (t)−Qsj,f (t)|].
(24)

By substituting (22a) into the RHS of (24), (23b) can be
proved. Likewise, (23c) and (23d) can be proved.

Theorem 3. The optimality loss of (11) using the approximation
(21) under farsighted content placement is bounded, i.e.,

[α(rt) + η(bt, ct) + β(qt) + γ(dt)]

− [α(r̂t) + η(b̂t, ĉt) + β(q̂t) + γ(d̂t)] ≤ εB
(25)

where {rt,bt, ct,qt,dt} and {r̂t, b̂t, ĉt, q̂t, d̂t} are the solu-
tions to (11) under real-time and farsighted content placement,
respectively, and B = 2T

[∑
i,f R

max
i,f δi + (F + 1)

∑
i,j(δi +

δj)C
max
ij + 2

∑
i δiF

max
i

]
is a constant.

Proof. To prove this theorem, we first evaluate the loss of
(12a), i.e., α(rt)− α(r̂t). According to (12a), we can obtain

α(r̂t) =
∑
i,f

αi,f (t)âi,f (t)

=
∑

i,f
[α̂i,f (t)âi,f (t) + (αi,f (t)− α̂i,f (t))âi,f (t)].

(26)

Recall that âi,f (t) is the optimal solution under the approx-
imate parameter α̂i,f (t). We can obtain∑

i,f
α̂i,f (t)âi,f (t) ≥

∑
i,f
α̂i,f (t)ri,f (t)

=
∑

i,f
[αi,f (t)ri,f (t) + (α̂i,f (t)− αi,f (t))ri,f (t)]

= α(rt) +
∑

i,f
(α̂i,f (t)− αi,f (t))ri,f (t),

(27)

where the second equality is because α(rt) =∑
i,f αi,f (t)ri,f (t) according to (12a). Substituting (23)

into the subtraction of (27) and (26), we can obtain

α(rt)− α(r̂t) ≤
∑

i,f
(α̂i,f (t)− αi,f (t))(ri,f (t) + âi,f (t))

≤ 2εT
∑

i,f
Rmax
i,f δi.

(28a)
Likewise, the optimality losses of (12b), (12c) and (12d) are
upper bounded by

β(qt)− β(q̂t) ≤ 2εFT
∑

i,j
(δi + δj)C

max
ij ; (28b)

γ(dt)− β(d̂t) ≤ 2εT
∑

i,j
(δi + δj)C

max
ij ; (28c)

η(bt, ct)− η(b̂t, ĉt) ≤ 4εT
∑

i
δiF

max
i . (28d)

Adding up (28), we prove the theorem.
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We can prove that the proposed two-timescale learning
and optimization of farsighted content placement and real-
time operations is asymptotically optimal based on Theo-
rems 1 and 3, i.e.,

Ψ̃∗(xt)−Ψ∗ ≤ ε(U +B). (29)

It is also noted that the optimality loss of farsighted content
placement is expected to increase linearly with T . The opti-
mality loss can be traded for the cost of content replacement.

Theorems 1 – 3 provide an accuracy analysis of the
proposed approach. Theorems 1 and 2 demonstrate that
the new approach converges to offline optimum asymp-
totically as the stepsize of SGD ε → 0 under real-time
content placement. The asymptotic optimality is due to the
convexity of the formulated problem, while SGD can be
used to fast converge to the global optimum of convex
objective functions [37]. Theorems 3 shows that the SGD-
based distributed online learning approach with mini-batch
learning for farsighted content placement is also asymptoti-
cally optimal.

6 SIMULATION AND NUMERICAL RESULTS

This section evaluates the proposed approach in a smart
edge caching network of N = 50 edge servers and F = 10
files. The edge servers are connected to an average of
M = 3 neighbors and have the storage size of caching
one file; unless otherwise specified. The file requests arriv-
ing at each edge server are independently and uniformly
distributed within [6, 10]Mbps, and the requests for each
file follow Zipf distribution [42]. The popularity for file i is
pi = 1/iξ∑

f∈F 1/fξ
with the skew parameter ξ = 0.8; unless

otherwise specified. The servers cache the files randomly
with the probability of file popularity. The simulation pa-
rameters used in our simulation are taken from the existing
dataset [18] and the existing work [29] (e.g., 50 edge servers,
as well as the network topology/delivery cost). The cost
of file delivery from peer servers, ζij , is randomly and
uniformly distributed from 0.05 to 0.15 per Megabit [18].
The energy consumption of file retrieval from the backbone
is typically about 10 times of the energy consumption from
peer servers [12], and therefore, the cost is set as ζi,f = 0.5
per Megabit [29]. 1/ε is 80. 50000 slots are tested per run.

The new online learning and optimization of coopera-
tive caching with a T -slot content replacement interval, as
proposed in Section 5, is denoted by “T-slot replacement”.
We also simulate four existing benchmarks3, as follows.

• Local caching, where the requests arriving at an edge
server can be only retrieved from its local memory or
delivered from the backbone.

• A non-cooperative Least Recently/Frequently Used
(LRFU) approach, developed in [41], is the state-of-
the-art reactive content replacement technique and
used as the benchmark in this paper. LRFU [41]

3. This paper aims to jointly optimize both content placement and de-
livery in a distributed manner in the absence of the a-priori knowledge
of file popularity and link availability. Existing caching algorithms, e.g.,
typical offline/one-shot optimization algorithms of cache placement
without considering content delivery, are not directly applicable. They
are also non-trivial to extend to serve the scenario of interest.
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Fig. 4. The cache hit ratio and cost of retrieving files within the edge
cloud, as F increases. The proposed approach achieves significantly
higher cache hit ratios than the other approaches, and the gain of
cooperative caching comes at the penalty of increased file retrieval cost.

integrates the classical LRU and LFU strategies to
balance between recent history (i.e., the timeliness of
file requests) of LRU and old history (i.e., the fre-
quency of file requests) of LFU. Files can be retrieved
from either the local cache (without cooperative file
delivery) of the edge servers or the backbone. For
fair comparisons with the proposed 10-slot replace-
ment approach, the non-cooperative LRFU approach
replaces the cached files in the local memories of the
edge servers every 10 time slots.

• All files cached in the local memories (denoted by
“all cached” in the simulation), where the edge
servers are assumed to have sufficient memories to
cache all the files, and can meet the requests locally.

• Cooperative caching with no replacement of cached
files at the edge servers (denoted by “no replacemen-
t” in the simulation), where the cached files at the
edge servers remain unchanged.

The distributed asymptotically optimal operations present-
ed in Section 4 are carried out under all the cooperative
caching approaches, but with different content replacement
interval. In the all-cached approach, the edge servers are
assumed to have sufficient memories to cache all the files
(as compared to the practical consideration of finite memory
per edge server in the proposed approach). This is only
used to provide the upper bound of the proposed approach
(designed for the edge servers with limited memories) and
evaluate the effectiveness of farsighted content placement in
the proposed distributed online learning approach.

Fig. 4 evaluates the cache hit ratio and the corresponding
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(b) Replacement interval, M = 1

1 2 3 4 5 6 7 8 9 10
Order of Files

0

0.1

0.2

0.3

0.4

0.5

C
on

te
nt

 P
la

ce
m

en
t P

ro
ba

bi
lit

y File popularity, =1.5
Cache size=1
Cache size=2

(c) Cache size, T = 5
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(d) Replacement interval, M = 1

Fig. 5. The probability of optimal content placement versus the popular-
ity of F = 10 files generated by the Zipf distributions with ξ = 0.8 (for
Figs. 5(a) and 5(b)) and ξ = 1.5 (for Figs. 5(c) and 5(d)). The probability
of optimal content placement matches the file popularity under different
popularity distributions when M = 1 and T = 5.

cost of retrieving files within the edge cloud of the proposed
approach, local caching, caching all files locally, and coop-
erative caching with no cache replacement, as F increases.
The proposed approach achieves significantly higher cache
hit ratios than the local caching, LRFU, and no-replacement
approaches. Both 5-slot replacement and caching all files
locally can grant nearly all the file requests from the edge
cloud, and their cache hit ratios are always close to 1. Due
to the enlarged replacement interval, the cache hit ratio of
10-slot replacement slightly drops and stabilizes at 0.93,
and the cache hit ratio of cooperative caching with no
replacement drops to 0.4.

We also see in Fig. 4(a) that the LRFU and local caching
approaches are susceptible to the increasing number of files
F , and can only achieve the cache hit ratios of 15% and 5%
when F > 50, respectively. In contrast, the proposed 5/10-
slot replacement approaches can achieve a cache hit ratio of
over 93%. This is because the requested files are less likely to
be cached in the local memory of the edge servers with the
increase of F . The LRFU approach replaces the cached con-
tents according to the request arrivals, and achieves higher
cache hit ratios than the local caching approach which
caches files randomly based on the file popularity. The
gain of the proposed cooperative caching approaches (as
compared to the LRFU and local caching approaches) comes
at the penalty of the increased file retrieval cost within the
edge cloud, as demonstrated in Fig. 4(b). Decreasing T (e.g.,
from T = 10 to 5) can increase the cache hit ratio and help
decrease the file retrieval cost from the edge cloud with an
increasingly large cache replacement cost (which is inversely
proportional to T ). T can be configured by the network
service provider to finetune the tradeoff between the cache
hit ratio of edge caching and the cache replacement cost.

Fig. 5 shows the probability of optimal content place-
ment at the edge servers under different cache sizes and
replacement intervals, versus the popularity of F = 10

files generated by the Zipf distributions of ξ = 0.8 and
1.5. The “probability of optimal content placement” defines
the probability of the files/contents being cached in the
local memories of the edge servers (i.e., the ratio between
the number of edge servers that cache a file and the total
number of edge servers in the edge cloud) by the proposed
asymptotically optimal approach. We show in Fig. 5 that
the proposed algorithm can learn the file popularity in a
distributed online manner via SGD, and the probability
of content placement matches the file popularity in both
cases of ξ = 0.8 and 1.5, when the replacement interval
T = 5 and the cache size per server M = 1. In Fig. 5(a),
when M increases to 2, the probability of caching the most
popular file decreases to almost half of that under M = 1,
and the probability of caching less popular files increases.
This is because, with the growth of the cache size, the
files with low popularity would be increasingly likely to be
cached to reduce the cost of retrieving these files multi-hop
away, until all the files are cached locally. In Fig. 5(b), the
probability of caching the most popular four files increases
with the replacement interval T . This coincides with the
well-established Least Recently/Frequently Used (LRFU)
policy [43]. When frequently refreshing the cached contents
(T = 5), LRU policy would place the files according to
their arrival (i.e., the same to file popularity); and when the
cached contents are static (T = 200), LFU policy would
cache the most popular contents. Figs. 5(c) and 5(d) for
ξ = 1.5 show the same phenomenon as Figs. 5(a) and 5(b)
for ξ = 0.8.

Note that the proposed distributed online learning ap-
proach neither takes the Zipf distribution of file popularity
as input, nor has any a-priori knowledge on the distribu-
tion in the simulation. Over time, our approach learns the
distribution from the request arrivals observed at the edge
servers, and generates the optimal content placement which
exhibits the Zipf-like shapes according to the file popularity,
as shown in Fig. 4.

Figs. 6 and 7 evaluate the stabilized caching profit
achieved by the four approaches: (1) the proposed T -slot
replacement, (2) local caching, (3) caching all files, and (4)
cooperative caching with no replacement, as T and 1/ε
increases. Fig. 6 shows that the stabilized caching profit (i.e.,
the optimality loss compared to caching all files locally)
of the T -slot replacement decreases with the replacement
interval T sub-linearly. This is because the linear optimality
loss, as analyzed in Section 5.3, provides the upper bound of
the mini-batch training. Nevertheless, the optimality loss is
bounded by the gap between the cooperative caching with
no replacement (which is equivalent to the case of T → ∞)
and the all cached approach (which provides the upper
bound of our approach). The system cost of the proposed
approach decreases with 1/ε. This is because increasing 1/ε
(i.e., decreasing stepsize of SGD) helps reduce the optimality
loss, as stated in Theorem 1.

Fig. 8 plots the queue backlogs of the new approach, as t
evolves. We can see in Fig. 8 that the backlogs of the system
first increase and stabilize over time. The stabilized backlogs
achieved by the 5-slot and 10/slot replacement approaches
are similar, and are shorter than that of cooperative caching
with no replacement. 10-slot replacement requires shorter
time for stabilization than 5-slot replacement, due to the fact
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Fig. 6. The stabilized caching profit as the
increase of replacement interval, T . The op-
timality loss resulting from the different two
timescales increases sub-linearly with T .
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0 1 2 3 4 5
Time Slot 104

0

2

4

6

8

10

12

T
ot

al
 Q

ue
ue

 B
ac

kl
og

s

104

Local caching
No replacement
All cached
5-slot replacement
10-slot replacement
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Fig. 9. The runtime of the proposed distributed approach per edge
server, as the number of files F and the number of servers N increase.

that suitable mini-batch size (i.e., T ) can help speed up the
convergence of gradient descent in mini-batch learning.

Fig. 9 plots the runtime of the proposed distributed
approaches per edge server, as the number of files F and
the number of serversN increase. We see that the runtime of
the proposed approaches increases sub-quadratically with F
and linearly withN (which is consistent with the complexity
analysis in Section 5.2), and is shorter than 0.11ms per
edge server. This confirms the real-time implementability
of our approach and its scalability to the network with large
numbers of files and servers. We also see that the runtime
of the 5-slot replacement approach is longer than that of the
10-slot replacement and no-replacement approaches. This is
because, with the shortening replacement interval, the 5-slot
replacement approach executes the content placement in-
creasingly frequently, hence increasing the time-complexity.

Fig. 10 plots the cache hit ratio within the edge cloud, as
the memory sizes of the edge servers increase from one file
per server to Mi = 10 files. The total number of files F is 10.
The proposed approach achieves up to 9 times the cache hit
ratio of the local caching approach when Mi = 1, and can
deliver all the contents within the edge cloud cooperatively
when Mi ≥ 2. The cache hit ratios of the alternative no-
replacement, local caching, and LRFU schemes increase with
Mi, as requested files are increasingly likely to be cached
in the local memories of the edge servers. The cache hit
ratios of the alternative schemes cannot reach 100% until
Mi = 10 (i.e., all the files are already cached locally).
This validates the gain of cooperative edge caching of the
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Fig. 10. The cache hit ratio within the edge cloud, as the memory
sizes of the edge servers increase. The proposed approach can achieve
significantly higher cache hit ratios than its alternatives.

proposed approach.

7 CONCLUSION

This paper proposed a new distributed online learning
technique to jointly optimize of content placement and
delivery in edge clouds without prior knowledge on file
popularity and link availability. SGD was exploited to de-
sign online learning to asymptotically minimize the cost of
smart edge caching in a distributed fashion. By integrating
mini-batch learning, the proposed approach operates at dif-
ferent timescales for content placement and delivery with-
out compromising the asymptotic optimality. Simulations
demonstrated the superiority of the proposed approach to
the prior art.
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