

Data Centric Security Issues and Challenges

Vijay Varadharajan Global Innovation Chair Professor Director: Advanced Cyber Security Engineering Research Centre The University of Newcastle <u>vijay.varadharajan@newcastle.edu.au</u>

Talk Overview

- Data Context and Related Challenges
- Data Centric Security
 - Controlling the Flow of Personal Data in Networks
 - Data Centric Security and Networks
 - Enforcement of Policies on Encrypted Data
- Concluding Remarks

Technology Context

- ✤ Data Explosion
 → Big Data
- * Systems of Systems \rightarrow Cloud Computing
- Ubiquitous Computing \rightarrow Internet of Things
- Pervasive Networking and Mobility
- Global Reach and Participation: Large Scale

Data Context

Lots and Lots of Data

- Today
 - Over 3 billion online users added in last 10 years
 - Over 5 billion videos watched daily on Youtube alone
 - Some 300 hours of videos loaded every minute in Youtube
 - Dramatic Growth in Social Media Facebook, Twitter, Instagram,...

We can probably store everything!

- All Movies made to-date : 1 petabyte or so
- All Music recorded to-date : 1 petabyte or so
- I Billion Photos : 1 petabyte
- Capture everything you ever said from the time you are born to the time you die.
 Less than a few percent of a petabyte
- Everything you ever did and experienced can be captured in living color
 - With only a few petabytes

Data Context: Transformative Changes

• What is Private

- Previously
 - Default position was information was private until you opened up
 - E.g. Locked in safety deposit box, house, filing cabinet etc.
 - May be required by law to open it up, or choose voluntarily to open up
 - But basically your personal information is locked and is private
- Now in the Cyber world
 - Private information is wide open
 - It may be in your laptop or mobile or some other device
 - As soon as it is connected to any form of network, it is not private any more
 - Default position is it is open
- So the presumption has changed
 - from controlling *opening* to controlling *closing*

Data Context: Transformative Changes

- What is Public
 - Previously
 - one did somethings in public and some people saw them
 - they might or might not discuss what they saw with other people, and
 - over a period of time, people may forget what they had seen
 - Now in the Cyber world
 - What is public far exceeds what Orwell imagined in 1984
 - In his case, not everyone in the population had a telescreen (only the Govt.)
 - Now, anyone can now use a mobile phone, video what is of interest, upload it to the Internet → pretty much available all over the world
 - May not be forgotten and can be recalled/aggregated
 - Can get a picture of someone else's life
 - (Potentially far more detailed than probably any secret police would have imagined some 30 years ago)

Data Context

- Taking a data centric view
 - What rights should people have to control data about them
 - How to manage the data they create as to who gets access and for what purpose
 - We have always had this issue in security
 - Now compounded by the volume of data, different types of data, distributed, and dynamic changes
 - Not only security but also privacy
 - Much of privacy law assumes
 - when you entrust your private information to an entity (e.g. bank or hospital), that entity has an obligation to not to misuse that information and preserve the trust

Data Related Challenges

- Just because data is accessible, it does not mean the data is trustworthy or reliable to make decisions, or even ethical to access and use it.
- There are several issues
 - Where does the data come from (data provenance)?
 - How trustworthy is it?
 - How do you know where your data is?
 - Do you know who can see the data and modify it?
 - Who can aggregate or summarize or embed your data for purposes other than what you specified?
 - How can data owners specify and enforce policies on the data as it moves over the Internet?
 - How to detect and prevent attacks on the services that operate on the data in a distributed environment?
- \rightarrow Enhance the trust and quality of decision making

Data Related Challenges

- Users
 - Typically want personal control of their data even if they don't want to exercise this control
 - Allow agents that they *trust* to access and process their data
- Regulators
 - Control of Data "Fundamental human right"
 - E.g. EU GDPR
- Industry
 - Usually prefer consistent rules to build customer relationships
 - Agreed rules to comply with regulations

Data Related Challenges

- Find where the data is and limit its use
 - E.g. Tracking of Sensitive Data: Credit Card Number, Social Security Number, Aadhaar ID
- Able to track data anytime and not just at the time of collection
- Across the whole Internet
 - Lots of Transactions over the Internet.
 - E.g. opening bank accounts, booking hotels, air and train travels etc.
- Across different agents and devices that handle the data
 - Users share sensitive data with several organizations
 - Government entities, private organizations
- Anonymous

GDPR and Individual's Data

- GDPR is oriented towards individuals' rights
 - the right to know how data about you is processed (collected, analyzed, and used)
 - the right to object to such processing
 - the right to see the data that is stored about you
 - the right to a meaningful explanation about automatic data processing
 - the right to withdraw consent to processing
 - the right to have your data erased under certain conditions
 - the right be able to easily move your data from one provider to a different one

Data Centric Security

- Policy based Data Centric Approach
 - Secure Coupling Mechanism
 - Data coupled with policy
 - Policy explicitly attached to data
 - Data tagged with link to policy
 - Should not be able to decouple data and policy
 - Security mechanisms enforcing this coupling
 - Policy stays with the data when the data is copied
 - Secure Processing Agents
 - Agents that process data must check and satisfy policies before using data
 - Trust in the Agents
 - Trusted Environment
 - Different types of policies
 - Audit and tracking policies
 - Access and usage policies
 - Obligation policies
 - Security Infrastructures
 - Policy to Data Mapping Infrastructure
 - Data to Policy Mapping Infrastructure

Data Centric Security Project

• Initial Work: Data Tracking Protocol

- A data tracking protocol that allows data originators/owners to track the flow of their data over Internet
- Using existing infrastructures such as DNS and TLS for ease of adoption

• Further Work

- Data originator/owner claiming the data
- Data originator/owner providing proof of ownership
- Data originator/owner enforcing data erasure
- etc.
- Examples
 - Data from IoT devices transferred over the networks
 - Data in social media
 - Data sharing within enterprise and between enterprises
 - Data transfer over networks

Data Tracking Protocol (DTP)

- Data tagged with metadata that links to policy
- Data Processing Agents process and store the data
 - Trusted willing to follow the rules and subject to regulation
- User chosen Policy Service
 - Online service that stores policies for user's data items
 - User specifies policies for his/her data
 - Tells data processing agents the policy associated with the data
 - Different data items and different data processors can have different policy services
 - Keeps track of data processors accessing user's data
 - Our Implementation
 - URL of policy service specified as part of DNS specification
 - Data protection using TLS

Data Tracking Protocol (DTP)

Policy Server

DTP with Protected ID and Data (TLS)

Policy Server

Data Centric Security

- Policies
 - Metadata pointing to policies associated with data
 - Not device or service centric
 - Basic Policies can be simple
 - Data Processor ProcID can use Data d Type t
 - Composition of Policies
 - Boolean operators such as and, or, else on atomic policies
- Data Transfer Calculus
 - Compute allowed uses of data based on how it is derived
 - Data content dependent constraints
 - Data provenance based constraints
 - "a law-enforcement official may not act on improperly obtained evidence, but if the same information were redundantly obtained through lawful channels the official can act"
 - Transformation of data as it moves from one Processing Agent to another
 - Combination of data from multiple agents producing new data
 - Conflict Resolution

Data Centric Security and Web Platforms

- Distributed Web Platforms
 - Third party applications running on a web platform
 - E.g. Facebook, Yammer
 - Users' control over what data third party apps can access
 - Many apps are more useful if they access users' sensitive data
 - Current solutions
 - Access control systems (often using some form of ACLs)
 - Security testing of app codes
 - Trust on software developers and producers

Data Centric Approach to Web Applications

- Developing web applications: Model-View-Controller pattern
 - Model (manages application data), Controller (interacts with users and model), View (model presentation)
- Policy based data centric approach to accessing data
- Also once data is accessed, policies control what apps can do with it

- Network: Provide data (and services) to users
 - Communication model based on connections between devices rather than the actual data
 - IP Packets name communication endpoints
- Issue: what data one wants to access versus where it resides
 - Access to container where data resides
 - Access to the data in the container
- Security
 - Connection focussed rather than data focussed
 - Security mechanisms to identify, locate and communicate with the host
 - Security of data tied to the host where it is stored and how (over what kind of connection) it is obtained
- Data Centric Approach and Networks
 - Decouples the *what* from the *where*
 - Focus on securing the data itself, rather than the containers where it resides

- Named Data Networks (NDN)
 - Request of data by Name rather than delivering data packets to receivers identified by IP addresses
 - If every data uniquely named, an NDN data packet is meaningful independent of where it comes from or where it may be forwarded to
 - If data changed in the packet, new packets generated with new names
- Securing Data in NDN
 - Naming data \rightarrow Secure data directly by protecting every data packet
 - Securing the data
 - It is the *desired* data
 - From the intended source
 - Not changed in an unauthorized manner in transit
 - Sometimes *not disclosed* to unauthorized entities
 - E.g. Reading data from a host on the web
 - Host is the correct one
 - DNS giving a reliable indicator of where to find a host authorized to "speak for" the named data
 - Connection has been actually made to that host
 - Data retrieved over that connection is unaltered by any unauthorized intermediary
 - May be protected from eavesdropping

- Securing NDN
 - Named, Secured Data Packets
 - Basic building block in NDN
 - Data packets in NDN need to be immutable
 - Each data packet carries a cryptographic signature (of the data producer) binding its name to the data content at the time of creation
 - Mechanisms for data packet to be encrypted if required
 - Key Management
 - All data producing entities to have cryptographic keys and facilities
 - Data consuming entities to verify the data packets
 - Efficient key management infrastructures required
 - Security Attacks
 - By default all data signed, including routing messages
 - Reduces spoofing attacks and malicious tampering easily detected
 - NDN messages are about data and not about addressing hosts
 - More difficult to send malicious packets to a particular target

- Data Centric Access Control for NDN
 - Design Issues
 - Who is authorized to produce which type of data
 - Who is authorized to consume the data
 - Policies that specify privileges that enable a data producer to produce specific types of data
 - Policies that specify privileges that enable a data consumer to read specific types of data
 - Facility to deliver the credentials to the corresponding entities producers, consumers
 - Facility to revoke the privileges of producers and consumers
 - If the data is encrypted, then we need techniques for enforcing policies on encrypted data

Data Centric Security – Encrypted Data

- Policy Enforcement on Encrypted Data
 - Assume now the Data Owners have encrypted their data
 - E.g. Cloud Data Storage System
 - Data Owners Specify the Policies: Who can access their data
 - Cloud Providers Enforce the Data Owners' Policies
- Access Control Solution
 - Only users that satisfy the access policies specified by the data owner is able to decrypt the data
 - Approach: Integrating Cryptographic Techniques with Access Control

Crypto based Access Control

• Some Existing Schemes

• ...

- Hierarchical Identity-based Encryption Schemes (HIBE)
- Attribute Based Encryption (ABE) and its variants

Attribute Based Encryption (ABE)

- ABE: Goyal et al (2006)
- Each entity is associated to an attributes policy which is the "and" of a set of attributes
- Each entity is given the decryption keys for all the associated attributes
- Attributes set for each entity is a super set of the attributes for all its descendant entities

Attribute Based Encryption (ABE)

- Data is encrypted to a set of attributes
- Users who have the private keys associated with these attributes can decrypt the data
- Disadvantages
 - Size of the user key is not constant
 - Changes with the number of attributes associated with each role and the role hierarchy
 - User revocation is inefficient (requires key update of all other non-revoked users in the same role)

Role Based Encryption (RBE)

- New RBE Scheme for Secure Data Storage
 - Integrating Cryptographic Techniques with Role based Access Control
 - Data encrypted to role or roles
 - Data owner encrypt the data in such a way that only users who satisfy the role based access policies (specified by the owner) are able to decrypt the data.
 - If data stored in cloud, if the cloud provider does not have the appropriate role(s), will not be able to decrypt the data
 - Characteristics
 - A user is able to join a role after the owner has encrypted the data for that role.
 - The user will be able to access the data from then on, and the owner does not need to re-encrypt the data
 - A user can be revoked at anytime, and the revoked user will not have access to any future encrypted data for that role
 - Revocation of a user from a role does not affect other users or roles in the system
 - Our scheme caters for role hierarchies and inheritance, thereby enabling roles to inherit permissions from other roles.

Policy Enforcement on Encrypted Data

Secure Hybrid Cloud Data Storage System

Role Based Encryption (RBE)

• Features

- Constant size ciphertext
- Constant size user secret keys
- De-centralized role management
- Efficient user revocation (no user secret key update)
- Forward Secure

Patient Centric Electronic Health Record (PCEHR) New Health Record System

Applications of RBE

- Secure Cloud Data Storage (e.g. New Health Records)
- Secure Data Sharing within a Large Organization
- Secure Data Sharing in a Multi Organization Context
 - Secure Data Sharing in a Consortium
- Large Scale Identity Management System Aadhaar

Concluding Remarks

- Challenges in Data Centric Security
- Secure Data Centric Approach
 - Policy based Control of Personal Data
 - Data Tracking Protocol with DNS and TLS
 - Data Centric Security and Networks
 - Named Data Networks Security
 - Enforcement of Policies on Encrypted Data
 - Role based Encryption (RBE) and its Applications

Cyber Security Research Areas @ Newcastle

