

2nd Data61/DST Group Cyber Summer School

Adelaide, 21 - 22 March, 2019

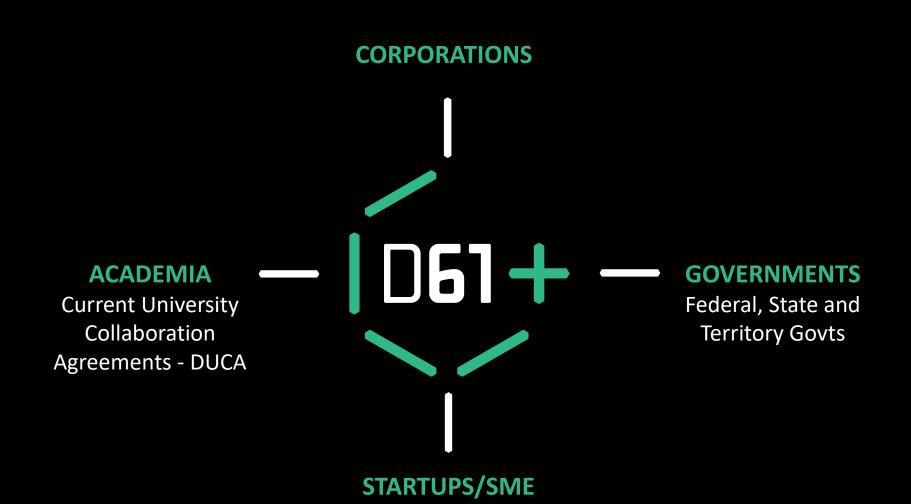
Australian Government

Department of Defence Science and Technology

AUSTRALIA'S DIGITAL INNOVATION POWERHOUSE

tincluding students

Corporate partners


29 University

University partners 190+

data-driven projects 172 patents

Industry – Academia Collaboration

Automate and simplify the cyber security necessary for our data driven future.

D61+ Cybersecurity Network

Partnership with DST Group 15+ active research projects with universities

Collaborative research Projects with 15+ Uni with access to researchers & PhDs

Partnership with Fed/State Governments on research projects

Partnership with AICD

Executive training for boards and executives

Collaboration with AustCyber & CRC

Seeding and scaling cyber security industry

Research Challenges & Themes

Research challenges, defined together with our defence partner, DST Group

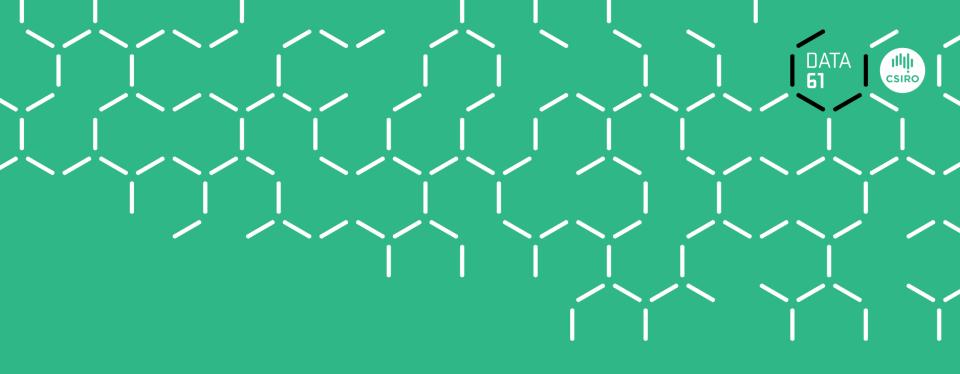
- Building trustworthy and resilient cyber systems.
- Risk-based cyber approaches and shared awareness.
- Strengthening the human and social dimension of cyber security.

Research themes within **D61+ network**

- Trustworthy Systems
- Automating Cybersecurity and Resilient Systems
- Cyber-Physical Systems Security
- Quantitative Cybersecurity Risk Management
- Data Security and Privacy
 - Data and Decision Trustworthiness
- Usable Human-centric Security

Cybersecurity Lifecycle

Prepare and Prevent

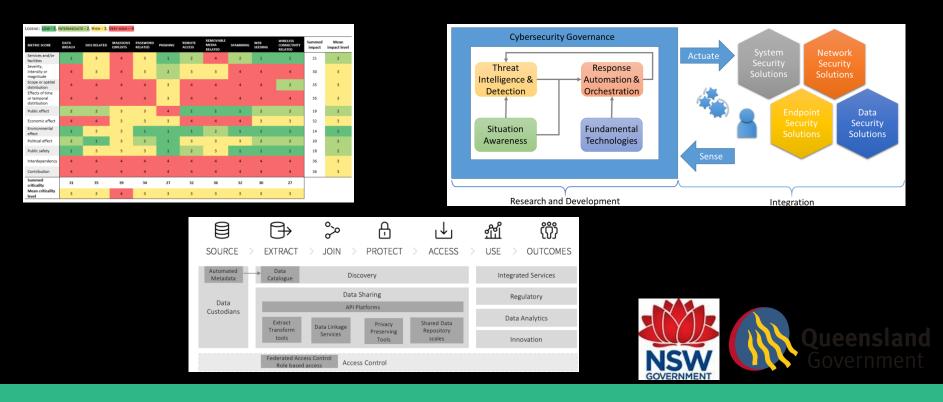

Design* solutions to prevent known & <u>unknown</u> cybersecurity threats, vulnerabilities, and exploitation involving users, systems and/or networks Monitor and Detect

Continuously **monitor** and **analyse** data provided by <u>users</u>, stored or processed by <u>systems</u>, and transmitted by <u>networks</u> to **detect** cybersecurity issues and provide situation awareness React, Recover and Diversify

Rapidly **recover** from cybersecurity problems in appropriate time , **change** solutions preventing reoccurrence, **counter attack** to disrupt attacks, and **prosecute** those involved

Investigate and Change

Continuously **capture** and **analyse** cybersecurity-relevant information to determine the cause of past problems, **predict** emerging threats, and trigger **redesign** of solutions to prevent them



Example Cyber Projects

Government: State and Federal

- Governing Cybersecurity by Identifying High Risk Threats
- Cybersecurity Incident Response Orchestration (CIRO)
- Whole-of-Government Secure Data Sharing Framework

Machine Learning & Al for Cyber

Automating cyber defence and addressing skill shortage

Adversarial Machine Learning

- Prevent attack to the learning itself
- Deep Learning for Cyber
 - ML applied to detect bugs and anomalies
- Autonomous Cyber Operation
 - Apply AI planning and autonomic computing to cyber defence

CSIRO

AI for Cybersecurity

"The need for automated, scalable, machinespeed vulnerability detection and patching is large and growing fast as more and more systems—from household appliances to major military platforms—get connected to and become dependent upon the internet." DARPA CGC

INATHEN
174,138

INATHEN
164,237

Image: Annotation of the state of the s

https://www.darpa.mil/program/cyber-grand-challenge

Australia's AI for Cybersecurity Infrastructure

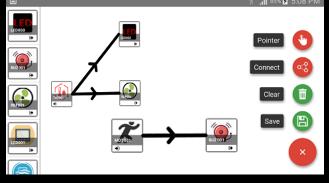
Various labs, cyber ranges, national research infrastructure..

IoT Security

Protect from the biggest security threat

Home

SMIT


Blog Downloads Docs News Contact

Welcome to SMIT (Secure and Modular IoT)

SMIT Project

SMIT package implements a basic IoT platform which consists of sink server, IoT devices, private Certificate Authority (CA) and border router. With this package, an interested user can build a secure IoT communication network over RaspBerry Pi and openIab 802.14.5 radio easily and quickly. This package provides the following functionalities:

• Create OS image for raspberry pi (3B).

☆

Secure IoT Device Mashup

DARPA HACMS

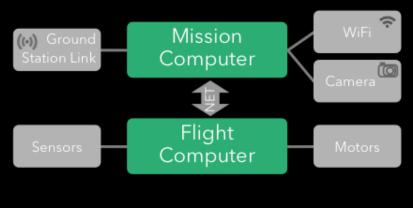
Trustworthy Systems

Building high-assurance cyber-physical systems

Aim

Protecting autonomous vehicles from cyber attacks

What

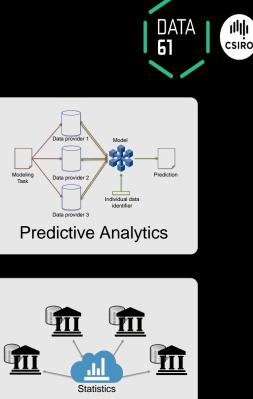

- Air vehicles: quadcopter, Boeing optionally-piloted helicopter
- Ground vehicles: robot, autonomous army trucks

How

- Formalised architecture
- Synthesised code
- Verified isolation (seL4 and CAmkES)

Results

- Vehicles running high-assurance software
- Resist attacks by Red Team


Confidential Computing

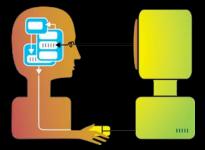
National and Enterprise Borders

Machine learning and joint analytics over fully encrypted data

- Learn valuable insights from sensitive data from multiple organisations without putting the data together using
 - Partial Homomorphic Encryption
 - Secure Multiparty Computation:
 - Irreversible Aggregation

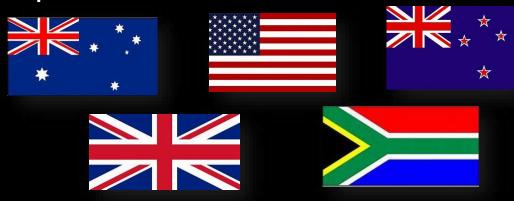
Partners: UK bank, Singapore bank, Australian government agencies

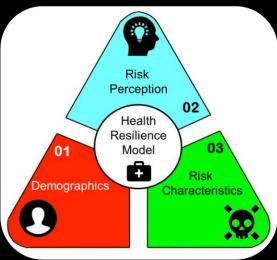
Data aggregation


Usable Security

Develop Security protocols considering the Weakest link (Human) in the Loop

- Observations-resistant password systems
 - Password systems that are secure even if someone watches
 - Discovering computing problems that are easy for humans
- Simulating human behavior when operating a security system
- Usable security also applicable to
 - group authorization, message integrity

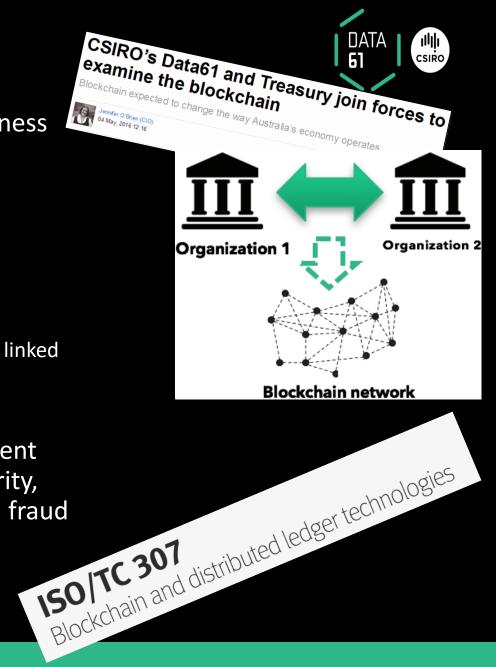




Transforming online risk resilience hardening

- Develop an international online health resilience model
- Multi-national online resiliency benchmarking experiment

Testing people's resilience to fraudulent websites under stressor conditions



One More Thing...

Blockchain: Resilience and trustworthiness *without* a trusted third party

- System designs with blockchain
 - Cross-org business processes
 - Architecture tradeoffs; Standards
- Trustworthy blockchain
- Mathematically-proven "smart contract" linked with legal contracts
- Empirical studies
- Applications: IoT security, government registries, (food) supply chain security, cross-boarder trade facilitation and fraud detection

Acknowledgements

DATA 61

- Gareth Parker and Liming Zhu
- All keynote Speakers and Invited Speakers
- Organising Committee
 - Marthie Grobler (Data61)
 - Anton Uzunov (DSTG)
 - Brigitte Biscotto (Data61)
 - Lisa Nguyen (Data61)
 - Siqi Ma (Data61)
 - Chadni Islam (University of Adeliade/Data61)
- All other student volunteers

Thank you

DATA

61

Surya Nepal, Research Group Leader Distributed Systems Security Surya.Nepal@data61.csiro.au

www.data61.csiro.au

