
UI and Security: Two Sides of the

Story

Wenke Lee

Georgia Institute of Technology

Who Cares About UI?

•Users do!

–That is how they use computers

• “Users are the weakest link in security”

•So, let’s look at the interplay between UI

and security

1

UI Can Both Hurt and Help Security

•New UI features can introduce new

vulnerabilities

–Not just in the UI code but also in the

underlying system

•UI can be leveraged to improve security

–Infer user intent and apply the

appropriate security policy

2

The Insecurity Because of UI

•Accessibility introduces new paths of

privileged access to system resources

•Powerful window manipulation permission

with accessibility on Android can hide

attacks from users

3

Computer Accessibility (a11y)

• For the person with
disabilities

–Visually impaired
•Text-to-Speech reader

–Hearing impaired
•Captioning service

–Motor impaired
•Voice Commander

–Keyboard impaired
•On-screen keyboard

4

Accessibility Library

• OS opens API for developing A11y features

–Available in Windows, OS X, Ubuntu, iOS, Android,

etc.

• Capabilities

–Read UI states of the system

–Perform actions on UI elements

•Click

•settext ()

•etc.

5

Security Implications of A11y

• Creates new I/O Paths

• Break basic/traditional assumptions on I/O

–Input comes from the user

•Through a11y interface, a program can send input

event to the application

–Output can only be seen by the user

•A11y interface allows to a program can read

output of the other applications

6

Traditional I/O Paths in OS

7

App

App

Ouptut

Input

Handler

Regular

Input DevicesScreen

Output

OS

A11y Added New I/O Paths to OS

8

Launch

Google.com!

1. User Speaks

2. Voice commander translate it into

machine command

3. OS delivers command to the app

(a11y library)

4. App is controlled by Voice

1) Click address bar

2) Type google.com

A11y Added New I/O Paths to OS

9

Process

Output

Assistive Technology

OS

App

Process

Input
App

Ouptut

Input

Handler

A11y

Library

Alt. input through a11y

Regular

Input DevicesScreen

Output

Original I/O path

A11y Input

(Voice)

A11y Added New I/O Paths to OS

10

1. App shows text output 2. Screen Reader gets app output

3. OS gets audio playing request
4. User receives audible output

Prepare audio for text…

What’s for

Lunch?

A11y Added New I/O Paths to OS

11

Process

Output

Assistive Technology

OS

App

Process

Input
App

Ouptut

Input

Handler

A11y

Library

Alt. output through a11y

Regular

Input DevicesScreen

Output

Original I/O path
A11y Output

(Speaker)

Required Security Checks

12

• Security checks must be put in the right places

–Does a11y input really comes from the user?

• Checks can be placed in three different level

–Assistive Technology (processor of alternative I/O)

–Operating System

–Application (protect themselves from alternative I/O)

At Assistive Technology (AT) Level

13

Launch

Google.com!

Required checks at AT level
Is the voice from real human?

If not, machine can access it!

Is the voice matched with registered

user?
If not, any other human user can access it!

At OS Level

14

Required checks at OS level
Is this assistive technology allowed to

access a11y?
If not, any program (possibly malware) can

access it!

At Application Level

15

Required checks at application level
Should I react to input from a11y

features?

In particular for security sensitive UI

actions!

Evaluating A11y Security in OSes

• Objective

–Check if OSs are secure under attacks through new

I/O paths created by supporting A11y

• Method

–Analyze OS for accessibility features

•Programmatic access to I/O event

•Voice commander, password viewer, etc.

–Test existence of required security checks

•If not, try to launch an attack

16

Evaluating A11y Security in OSes

• Target
–4 Major OSes

•MS Windows 8.1, Ubuntu 14.04 Linux

•iOS 6, and Android 4.4

• Focus
–Try to evaluate OS default settings

•AT-level check

–Voice Commander

•OS-level check

–Programmatically controllable I/O

•App-level check

–We do not perform the evaluation …

17

Evaluation on A11y Input

18

Platform
AT-level check

(voice commander)

OS-level

Security Check
Vulnerable?

Windows
None

(Speech Recognition)
UIPI YES

Ubuntu N/A None YES

iOS 6
None

(Siri)
None YES

Android
Voice Authentication

(Moto X)

User Settings

Required
YES

Evaluation on A11y Output

19

Platform
Reading of

UI Structure

A11y leaks on

screenshot

Password

protection
Vulnerable?

Windows UIPI Yes Yes YES

Ubuntu None No
Yes, but

incomplete
YES

iOS 6 N/A Yes N/A YES

Android
User Settings

Required
No

User Settings

Required
YES

Attacks for missed checkpoint

• We tried to launch attacks if any of security check is missing

• We found 12 new attacks

–Windows (3)

•2 Privilege escalation, 1 password leak

–Linux (2)

•Bypassing process boundary, password leak

–iOS (4)

•Bypassing sandbox and authentication

•Privilege escalation, Password leak

–Android (3)

•Bypassing sandbox and authentication

•password leak

20

Attacks on Voice Commander

• Voice commander accepts non-human voice

–Any app capable to play audio can send command

•Broken assumption: input comes from the user

–No authentication

•Windows Speech Recognition

•Siri

•Google Now

–Voice authentication in presence

•Moto X

–Vulnerable to replay attack

21

Privilege Escalation in Windows

• Malware runs as normal user can execute

Speech Recognition

• Speech Recognition automatically launches with

administrative privilege

–Let A11y user control admin stuff …

• Malware can get admin privilege by sending

voice command to Speech Recognition

22

Take Control Over Other Apps

• A11y library allows a program send input to the other

apps

–Broken assumption: input comes from the user

• Privilege escalation

–Windows

•Send click to a security-sensitive dialog

• Bypassing app sandbox

–iOS and Android

•Sending programmatic input to the target app

23

Stealing Password!

• Applying image processing on screenshot leaks

password string.

24

A) Before clicking

Eye

B) After clicking Eye

Discussions

• Root-cause

–Maximizing compatibility

•The UI is expected to run as if it gets the real input

on a11y request

•Programmatic input processed as same as the

real one

25

Real Touch Click A11y Click

Intermediate func onTouchEvent() performA11yActionInternal()

Final handler in UI performClick() performClick()

The same PerformClick() is called

26

Discussions

• Root-cause

–Problems when it handled user input and ATK input

differently

•On gksudo dialog, copytext() works while Ctrl-C

does not work!

•New implementation could miss security checks.

27

GTK::CopyText() {

if(text->isVisible)

return text

else

return null;

}

ATK::CopyText() {

…

return text

…

}

Discussions

• Root-cause
–No correct authentication for alternative input

• E.g., any program can send fake voice …

–Technical & economical difficulty

•Possible solution for voice authentication

–Liveness check

–Challenge-response

•Practical issues

–Processing power

–Power consumption

–Etc.

28

Discussions

• Root-cause

–Weak access control on a11y libraries

•Windows: None

•OS X : None

•Ubuntu: None

•iOS 6 : None -> patched in iOS 7

•Android: User settings

–Not enough …

29

Leveraging UI to Improve

Data Protection?

What data is important/valuable?

Ask the user?

What? Aren’t They the Weakest Link?

What data is important/valuable?

User-Intent Monitoring of
(Text-Based) Networked Applications

User Intent from UI

• User interacts with computer using

input/output hardware
• Input: Keyboard, Mouse

• Output: Display screen

– Feedback loop in user interaction

33

Capturing User Intent

• Observation

–User verifies what their input by on-screen display

• A New Security Policy

–What You See Is What You Send (WYSIWYS)

•On-screen text is user-intended

•Only allows traffic that matches on-screen text

Hi, there!

Hey, send me $100

34

What You See Is What You Send

• WYSIWYS (Facebook example)

35

What You See Is What You Send

• Supposed we have a security monitor for WYSIWYS

–Compares outgoing traffic data with data on

application GUI

–Needs to query application for data on its GUI

–If the application is already compromised

•It can lie about data on GUI

• Cannot trust application GUI

• The security monitor must have control over “GUI”

36

Security Overlay

Combined Screen

On-screen text is always same with captured

text on the security monitor.

37

Security Overlay

• Only re-draws certain elements, e.g., editbox

–Exactly same location, size, and color

–Can support rich-text

•Font, size, color, style, etc.

• Passive UI

–It does not gets any user input

–Content updated after each applications gets input

–Support selection, copy/paste, spell correction, auto-

completion, etc…

38

UI Monitor

• Uses library for UI Testing (UIAutomation)

39

System Architecture and TCB

40

Threat Model

• Hypervisor and security VM is fully trusted

–Assumes VM escape is impossible

• Hardware input devices are trusted, and attacker has no

physical access

–Attacker cannot forge hardware input event

41

Threat Model (Cont’d)

• All hardware input event is interposed at hypervisor first,

then delivered to User VM

–Security VM cannot miss hardware event, and User

VM cannot emulate it

• Completely distrust User VM

–Allows all attacks including Kernel-level malware

•UI monitor is untrusted

42

Capturing User Intent

• Extract all required text from Secure Overlay when

traffic-triggering event happens

–Store it to Authorization DB for enforcement at

network level.

43

Application-Specific Logics

• User Intent Signature

44

Application Examples

45

Paypal Example

• Paypal “Send Money”

46

What user sees when sends money Outgoing network traffic

Paypal Example

• Capturing User Intent

47

When Continue is clicked,

Stores e-mail and amount

{

“ACTION” : “Paypal Send”,

“Recipient” :

yeongjinjanggrad@gmail.com,

“Amount” : “1.00”

}

Authorization Vector

Store it to

Authorization DB

Paypal Example

• Monitoring Network Traffic

–Apply Deep Packet Inspection

48

{

“ACTION” : “Paypal Send”,

“Recipient” :

yeongjinjanggrad@gmail.com,

“Amount” : “1.00”

}

Authorization Vector
Passes the traffic only if it is matched

with previously authorized data in DB

Security Overlay For Messaging App

49

Summary

• Security is about data protection

–What data is important to user?

–Usability is the key

•Do users have to change workflow?

• Security overlay

–A systems mechanism

–Monitors user intents through on-screen UI data, and
security policy

•Integrity and confidentiality protection

–Transparent

–General

•Applicable to class(es) of applications

50

Biometric Authentication

Image Credit: IBM Future of Identity Study

https://securityintelligence.com/new-ibm-study-consumers-weigh-in-on-biometrics-authentication-and-the-future-of-identity/

Challenges

• Privacy Issues
• No existing method for

remote biometric-
based authentication on
encrypted data

• Current practice is
storing raw biometrics
in the authentication
server

• Recent database
breaches make people
reluctant to give their
biometrics to most
services

• Stolen Biometrics
(Live?)

• You cannot replace a
biometric

• Most popular biometric
sources (e.g. face,
voice) are easily stolen

• Systems like
MasterCard’s Smile-to-
pay or AliPay’s Blink-to-
pay are open to large-
scale replay attacks
through stolen
biometrics

• Allow biometric matching

over encrypted biometric

data on remote

authentication server

which enables recovery

Protecting Privacy

• Live-biometrics

– Enrollment & recovery

– Ask users to read out random and

funny English phrases in

CAPTCHA format (rtCapctcha)

• Answer question being asked

• Random to prevent replay

attacks

Liveness Detection

ISTC-Adversarial Resistant Security Analytics

Web Interface

User

AVPass

Research

Module

SHIELD

LSTM-PT

model

instance
model

instance
model

instance

model

instance
model

instance
model

instance

model

instance
model

instance
model

instance

docker
microservice

Storage

…

MLsploit

Credits

• Simon Chung

• Brendan Dolan-Gavitt (NYU Poly)

• Yeongjin Jang (Oregon State)

• Bryan Payne (Netflix)

• Chengyu Song (UC Riverside)

• Erkam Uzun

• Tielei Wang (now a start-up in China)

• Carter Yagemann

57

