How difficult is it to build an IoT device?

Smart temperature sensor

IP Camera

Baby monitor

Heterogeneity: Standards

- Bluetooth Low Energy (BLE)
- 6LoWPAN
- LoRA
- MQTT
- LTE Cat0 •
- IEEE 802.15.4
- Internet 0

- RFID
- Sigfox
- Smartdust
- Tera-play
- Xbee
- Z-Wave

Heterogeneity: Hardware

Table I

CROSS-SECTION OF CURRENT MOTE PLATFORM SPECIFICATIONS

Device	MCU	Word Size	Clock
Imote 2 [12]	Intel PXA271	32 bit	104 MHz
INGA [13]	ATmega 1284p	8 bit	8 MHz
Mulle v5.2 [14]	Renesas M16C/62P	16 bit	10 MHz
SunSPOT v6 [15]	AT91SAM9G20	32 bit	400 MHz
TelosB [16]	TI MSP430F1611	16 bit	4 MHz
XM1000 [17]	TI MSP430F2618	16 bit	8 MHz

Heterogeneity: Platforms

- Arduino
- Contiki
- Electric Imp
- Gadgeteer
- ioBridge
- Raspberry Pi
- SensorTag

- TinyOS
- Wiring
- Xively

Typical Operational Models

Philips Hue Lamps

- One of the oldest IoT devices on the market (since 2011).
- Ability to control lights via a smartphone app.
- Highly Customizable and work with a lot of 3rd party services like IFTTT (eg: blink the light if someone sends me a message on facebook)

Communication Process

- □ Phone talks directly to the hue bridge and bridge then relays appropriate commands to the lights using zigbee.
- □ All Communications between the phone and the bridge are in plain text.

Philips Hue Attack

Philips Hue Attack (Demo Andrew Bennet

former project student)

LoRaWAN Network Architecture

Physical layer key generation

Classical encryption system

Key generation system based on wireless channel

System Design

Evaluation

Experimental device: mdot LoRa module

Table I: Parameters setting.

Frequency	Bandwidth	Spread Factor	Code Rate	Transmission Power
AU915MHz	500KHz	7	4/5	20dBm

Evaluation

Experimental setup:

- Indoor static scenario
- Indoor mobile scenario
- Outdoor static scenario
- Outdoor mobile scenario

Metrics:

- Key generation rate (bits/sec)
- Key match rate (%)

RSSI Correlation

Variation in RSSI vs. time

Memory Overhead

Store RSSI for every transactions – Memory overhead? Solution: Quantization_

Figure 5: Level crossing quantization technique

SeAK: Secure Pairing

DLINK: Dual Link based Radio

Girish Revadigar, Chitra Javali, Wen Hu and Sanjay Jha, "DLINK: Dual Link Based Radio Frequency Fingerprinting for Wearable Devices". 40th IEEE Conference on Local Computer Networks (LCN), Florida, USA, October 2015.

