

Australian Government

**Department of Defence** Science and Technology

# **Defence Cyber S&T**

### Dr Gareth Parker Theme Leader, Next Generation Technology Cyber

E Science and Technology for Safeguarding Australia

### **National Interest**







**⊡**• ⊞•

ŀ

÷





  

### Defence



- Complexity
- Asymmetry
- Isolation
- Combined effects

Science and Technology for Safeguarding Australia

# **Defence's cyber S&T goals**

### Platform cyber-worthiness and cyber security

Establish a trusted core and a quantifiable level of trustworthiness in Defence's networks and digital platforms.

### **Defensive cyber operations**

Maintain a dynamic understanding of complex military digital systems, autonomously identify and fix vulnerabilities, and defend against attack by a sophisticated, machine-assisted adversary.

### **Intelligence**

- *Through* cyberspace: Identify, locate, and exploit targets in a massively connected, virtualised world, using computer and communications information that may be voluminous, incomplete, heterogeneous and encrypted.
- *About* cyberspace: understand broader cyberspace, including the threat landscape.

### **Effects**

Development of targeted effects against an adversary through cyberspace.

**⊪** ⊪







# **Research themes**

H٠

### System design for resilience



#### Decision support

#### Situational awareness



#### Machine-based cyber operations





🔹 🔹 🔹 🔹 🔹 🔹 🔹 🔹 🔹 🔹 Science and Technology for Safeguarding Australia



🖡 🖡 🖡 🖡 🖡 🖡 👘 👘 👘 👘 Science and Technology for Safeguarding Australia

5

....

### **System design for resilience**

Building solid foundations into Defence's digital systems

#### Constituent research

- Trustworthy underpinning for systems
- Hardening military applications and systems

- Vulnerability research
- Communications security
- Cryptography

• Human influence



### **Cyberspace situational awareness**

Real-time understanding of a dynamic system through information that can be voluminous, incomplete, heterogeneous and encrypted

#### Constituent research

- Mapping of military mission to key cyber terrain
- Discovery of behaviours of interest in network traffic
- Representation and reasoning about computer and communication network information
- Battle damage assessment



Science and Technology for Safeguarding Australia

### **Cyber decision coordination**

Coordinating real-time decisions in a contested cyber environment

#### Constituent research

- Decentralised cyber command and control
- Automated planning and decisions
- Cyber operations analysis

÷

H٠

8

÷



### **Machine-based cyber operations**

Enable ADF cyber teams to train, exercise and deploy with inhuman speed and scale at the tactical edge with minimal resources

### Constituent research

÷

÷

- Machine-assisted cyber defence
- Dynamic malware & vulnerability discovery
- Military autonomous cyber operations
- Robust machine learning-based network defence



## Next Generation Technology - Cyber Phase I: 2017-19



÷

10

÷

- Foundational research themes
  - System design for resilience
  - Autonomous systems
  - Sensing to effects

....

÷

 •

- Cyber influence and data analytics
- Technology forecasting
- 3-year agreement to partner with Data61 in shaping and leveraging the academic community in Cyber S&T

**∷**⊷

- Collaborative research projects with 13 universities
- Research community building events

÷





### **Outcomes to date**

11 🕨 📴 📴 📴 📴 📴 📴 📴 📴 👘 📴 👘 👘 👘 👘 👘

### **Phase I Outcomes – System Design for Resilience**

ŀ

.

ŀ

ŀ

.

#### Micro-architectural vulnerabilities

 Mitigation of covert timing channel between concurrent processes



·· ·

**⊪ ⊪ ⊪** 

•

12

#### Cross-domain desktop compositor



## **Phase I Outcomes – System Design for Resilience**

10 In

.



#### Vulnerabilities in network control

<u>.</u>...

13

• Detection of anomalous behaviour in OSPF network protocol

÷

÷

### Software defined network security

- Architecture developed to capture, analyse and forward network traffic
- ML analytics to detect adversarial data exfiltration via DNS



Science and Technology for Safeguarding Australia

### **Phase I Outcomes – System Design for Resilience**

### Deep learning for code vulnerability analysis

- Identifying function scope in software binaries
- Transferring learning models to domains in which few vulnerabilities are available for training



÷

÷

÷

÷

H٠

#### Phishing mitigation

**⊡**• ⊪•

 Researching the user and environmental factors that influence phishing susceptibility

. .

### **Phase I Outcomes – Situational Awareness**

ŀ

....

.



Deep learning for encrypted network traffic characterisation

- Successful identification of WiFi message content using an 'open world' assumption
- Deep learning solutions based on temporal, ever evolving, and sparselylabelled data

.

**.** 

<u>.</u>.

15

Network knowledge representation, fusion and reasoning

- Development of an appropriate ontology for network related information
- Developed a framework for incorporating provenance information



### **Phase I Outcomes – Machine-Based Cyber Operations**

### Autonomous penetration testing

 Demonstration of the utility in applying decision processes from robotics to design optimal strategies for adversarial cyber games



#### Adversarial machine learning

 Demonstration of network defence compromised through both manipulation of reward mechanism as well as poisoning of training data

### Autonomic computing

16

 Distributed Self-Management of Resilient Cyber Systems

÷

**⊪ ⊪ ⊪** 

### High Speed Machine Learning

- Successful FPGA implementation and comparative assessment of ML-based spectrum monitoring algorithms
- Planned extension to EW application



## **Phase I Outcomes – Cyber Decision Support**

### Automated planning tools

17

• Extension to cyber security application of planning approaches for problems with time constraints

