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Cybersecurity Lab Core Capabilities

• FinTech and blockchain
• Risk and decision making
• Trustworthiness
• Data privacy
• Spam detection

Application
security

• Security analytics
• Threat prediction
• Machine learning for cyber
• Social networks security
• Insider attacks detection

Data security

• Network, SDN, NFV security
• Cloud security
• CPS/IoT security
• Ransomware/Malware
• Autonomous security
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Real-world DataSecurity
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Software vulnerability detection
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Challenge
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Observations

• Abstract Syntax Trees (ASTs): an effective code representations.

• Software source code shares similar statistical properties to natural 
language. 

• Vulnerabilities from different projects share common knowledge, which is 
discoverable by deep learning algorisms.
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Data

Feature Engineering

ML Algorithms

Evaluations

Taxonomy – Our Work

Source code

Binary / Assembly

Pattern-based

Text-based

Code Properties

Trees – Abstract Syntax Tree (AST)

Graphs
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The Datasets
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Binary Vulnerability Detection



Future Work

Binary-
level
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-level 
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Focusing on scenarios where the 
source code is unavailable

Identifying multiple instructions 
(reverse-engineering) that are

potentially vulnerable

Focusing on vulnerabilities caused
by missing checks (e.g. numeric

errors).



Example 2 - ML-based malware detection



Example 3 – Twitter spam detection



Example 4 - Network traffic classification
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