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Background Approach Conclusions

WHAT IS MACHINE LEARNING?
• It is a method of data analysis including making decisions such as

classification

HOW DOES IT WORK?
• Automatically builds an analytical model by using algorithms that

iteratively learn from data
• Machine learning allows computers to find hidden features without

being explicitly programmed to extract these features.

WHY IS IT POPULAR NOW?
• Growing volume and variety of available data
• Increased computational capability
• Affordable data storage
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SUPERVISED LEARNING

• We give data as well as labels
• The algorithm finds the relationship between the data and the labels -

e.g., Classification

UNSUPERVISED LEARNING

• Data is given without labels
• Algorithm finds patterns in data - e.g., Clustering or Anomaly Detection
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Anomaly detection: a general 
challenge of intelligence?

Spot the odd one out:

a. b. c. d.

a. b. c. d.



Learning Unusual Patterns (Anomaly Detection)

• Learn a model of “normal” database records

• Use this model to test new records for anomalies

• Any anomalies can be either interesting or errors



Unsupervised Anomaly Detection

[Eskin et al. 2002]
• Map record fields into a feature space {f1… fk}
• Cluster similar records
• Use large clusters to represent normal records

f1

f2



Unsupervised Anomaly Detection

K-nearest neighbours:
• Find k nearest neighbours of each point
• Data points with high kNN distance

are in sparse regions of space

f1

f2



Unsupervised Anomaly Detection

One-class Support Vector Machine:
• Map data points into a higher dimensional space
• Find a hyperplane that is maximally distant from origin

while separating most points from origin

f1

f2

y1

y2

y3
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ONE-CLASS SUPPORT VECTOR MACHINES

• An unsupervised learning algorithm to detect anomalies
• Linearly separates the training data w.r.t. the origin with the highest

margin
• The primal optimization problem of OCSVMs is (Schölkopf et al. 2000)

min
w, ξi, ρ

1
2
‖w‖2 − ρ+ 1

νn

n∑
i=1

ξi

subject to 〈w , xi〉 ≥ ρ− ξi, ∀i = 1, . . . , n
ξi ≥ 0, ∀i = 1, . . . , n

(1)
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x
x
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• where ν ∈ (0, 1) is the regularization parameter
• take larger value for ν if training set is suspected to be contaminated
• ρ is the offset from the origin
• ξi values are the slack variables
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ONE-CLASS SUPPORT VECTOR MACHINES

• The dual form of the OCSVM algorithm is (Schölkopf et al. 2000),

min
α

1
2

n∑
i,j=1

αiαj〈xi , xj〉

subject to 0 ≤ αi ≤
1
νn
, ∀i = 1, . . . , n

n∑
i=1

αi = 1

(2)

where αi are the dual variables
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KERNEL TRICK

• Suppose input data is not linearly separable
• The original input space is mapped, via function φ, to a

higher-dimensional feature space where the data is linearly separable
• Explicitly transforming each data point is computationally expensive

(especially with high dimensional data)
• As optimization problem 2 uses the dot product between data points,

the “kernel trick” can be used for positive definite kernel functions in
order to reduce the computational load
〈φ(xi)) , φ(xj)〉 = k(xi, xj)

• Time complexity: O(dn2) where d is
the dimension of input space and n is
the number of training data samples

1
https://www.researchgate.net/figure/260283043_fig13_

Figure-A15-The-non-linear-SVM-classifier-with-the-kernel-trick
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ALTERNATIVE TO THE KERNEL TRICK

• Rahimi and Recht (2008) introduced Random Features for Large Scale
Machine Learning in order to reduce the computational load (RKS
algorithm)

• Map the input data to a randomized low-dimensional space, called
feature space, and then apply existing fast linear methods

• Time complexity: O(dn) where d is the dimension of the feature space

Non-linear Kernel Linear SVM

Randomized linear 
projection to lower 

dimension

Non-linear 
transformation

Linear SVM

Input space

RKS algorithm

≈
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S. Erfani,  M. Baktashmotlagh,  S. Rajasegarar,  S. Karunasekera, C. Leckie, "R1SVM:
A randomised nonlinear approach to large-scale anomaly detection" AAAI 2015
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ACTIONS OF AN ADVERSARY
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Can they "poison" our model of what is normal?

Source: Winnetka Animal Hospital
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ATTACK ON INTEGRITY

• The ultimate objective of the attacker is to fool the user into labeling
anomalies as normal during testing (increase False Negatives)

• The attacker would first compromise the classifier by injecting outliers
into the training data

• After this, it would be easier for the attacker to craft harmful adversarial
data points that are classified by the user as normal data points.

• Learners such as OCSVMs can withstand noise in data
• But are affected when adversaries deliberately distort data
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INCREASING THE ATTACK RESISTANCE OF OCSVMS

• It has been shown that transforming data using the RKS algorithm can
create better separated data clouds

• There is a potential for adversarial distortions to have a less impact
when data is projected to lower dimensions

• It becomes very difficult for the Adversary to predict the projection
matrix because it is chosen randomly
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OCSVM - BEFORE ATTACK

Normal Data

Anomaly Data

OCSVM margin

0
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OCSVM - AFTER ATTACK

Poisoned 
OCSVM

Distorted anomaly data

Old margin

New margin

0
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IMPACT ON OCSVM MARGIN

• Let w∗
p be the solution in the projected space without adversarial

distortions
• Let w∗

pd be the solution in the projected space with adversarial
distortions

• Margin of separation of a OCSVM is given by ρ/‖w‖2

• Which implies that a small weight vector corresponds to a large margin
of separation of the attack

• ‖w∗
p‖2 − ‖w∗

pd‖2 is an indicator of the attack’s effectiveness
• As the learner cannot demarcate adversarial distortions from the normal

data, it cannot empirically calculate ‖w∗
p‖2

• Therefore we derive an upper bound on ‖w∗
p‖2 − ‖w∗

pd‖2
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DETAILS OF THE RKS ALGORITHM

• Training data - X ∈ Rn×d

• Adversarial distortions - D ∈ Rn×d

• Projection matrix - A ∈ Rd×r, where each element is an i.i.d. N (0, 1)
random variable

• b is a 1× r row vector where each element is drawn uniformly from
[0, 2π]

• Define B as a n× r matrix with b in each row
• Define C ∈ Rn×r as C := cos

(
(X + D)A + B

)

Randomized linear 
projection to lower 

dimension

Non-linear 
transformation

Linear SVM

X+D
(X+D)A C= cos{(X+D)A+B}
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ASSUMPTION 1: Let D = (dij) ∈ Rn×d , THEN THE
DISTORTIONS MADE BY THE ADVERSARY ARE SMALL S.T.
cos(dij) = 1− d2

ij

2 HOLDS (I.E., SMALL ANGLE
APPROXIMATION)

THEOREM 1: If Assumption 1 holds, then the difference
between the lengths of the vectors w∗

p and w∗
pd are bounded

above by

‖w∗
p‖2 − ‖w∗

pd‖2 ≤
3
√

r
2

. (3)
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Key message: random projection of data to lower dimensional 
space limits ability of attacker to poison anomaly detector training!
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CONCLUSIONS

• OCSVMs are designed to withstand noise in training data
• But are vulnerable to malicious adversarial distortions
• RKS algorithm was previously used to lower the computational

requirements
• Projecting training data to lower dimensional spaces could mask the

possible adversarial distortions
• Effectiveness of the adversarial distortions would be reflected on the

difference between the margins of separation (after using RKS
algorithm)

• We theoretically show that the difference can be reduced by projecting
to lower dimensional spaces
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P. Weerasinghe, S. Erfani, T Alpcan, C. Leckie, M. Kuijper, "Unsupervised  Adversarial  Anomaly
Detection  using  One-Class  Support Vector  Machines," MTNS 2018.
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THEOREM - HIGH-LEVEL PROOF

• Define CX := cos(XA + B), CD := cos(DA), SX := sin(XA + B) and
SD := sin(DA)

• Let α̃ be the vector achieving the optimal solution in the projected
space when adversarial distortions are present. The following is derived
when obtaining the dual optimization problem of OCSVMs,∥∥w∗

pd

∥∥
2 =

∥∥α̃TC
∥∥

2. (4)

• Using the cosine angle-sum identity on C (the symbol � denotes the
Hadamard product for matrices),∥∥w∗

pd

∥∥
2 =

∥∥α̃T(CX � CD)− α̃T(SX � SD)∥∥
2. (5)
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THEOREM - HIGH-LEVEL PROOF

• From Assumption 1, the constraint conditions of the OCSVM problem
and by using small angle approximation, we obtain

∥∥w∗
pd

∥∥
2 ≥

∥∥α̃TCX
∥∥

2 −
3
√

r
2

(6)

• Since the optimization problem is a minimization problem the optimal
solution for the OCSVM without any distortion (i.e., α∗) would give a
value less than or equal to the value given by α̃.

∥∥α∗,TCX
∥∥

2 ≤
∥∥w∗

pd

∥∥
2 +

3
√

r
2
, (7)

∥∥w∗
p

∥∥
2 −

∥∥w∗
pd

∥∥
2 ≤

3
√

r
2
. (8)

• The learner is able to make the upper bound tighter by reducing the
dimensionality of the dataset (i.e., r).
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