

Multimedia Forensics and Security through Provenance Inference

Chang-Tsun Li

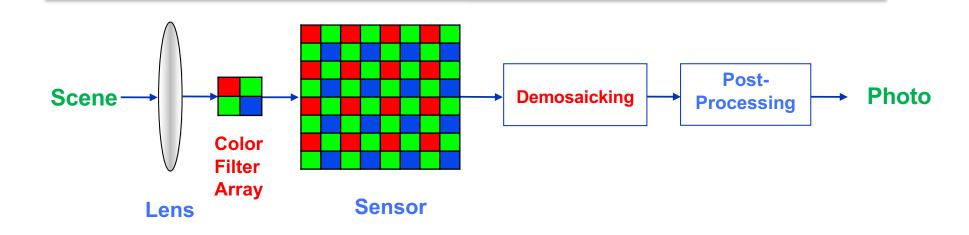
School of Computing and Mathematics

Department of Computer Science University of Warwick

UK

Outline

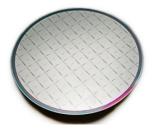
- Device Fingerprints
- Multimedia Forensic Applications
 - Source Device Verification
 - Source Device Identification
 - Common Source Inference
 - Content Authentication
 - Source-Oriented Image Clustering
- Conclusions
- Future Works


Why not Use Metadata - EXIF File

• Metadata is *easily* removable and replaceable.

IMG_5769.JPG Properties	
General Details Previous Versions	
Property Camera maker Camera model F-stop Exposure time ISO speed Exposure bias Focal length Max aperture	Value Apple iPhone 6 f/2.2 1/291 sec. ISO-32 0 step 4 mm
Metering mode Subject distance Flash mode Flash energy 35mm focal length	Pattern
Advanced photo Lens maker Lens model Flash maker Flash model Camera serial number	
Remove Properties and Personal Information OK Cancel	

Device Fingerprints



- Lens aberrations (accurate to device models)
- CFA + demosaicking artefacts (accurate to models)
- Quantisation table of JPEG (accurate to models)
- Sensor pattern noise (accurate to individual devices)

Sensor Pattern Noise (SPN)

- SPN is the invisible artifacts left in the images by the sensors of devices.
- SPN is mainly caused by
 - manufacturing imperfection of silicon wafers and
 - different sensitivity of pixels to light.
- Sensors made from the same silicon wafer produce unique SPN

• SPN can differentiate cameras of the same model.

SPN Extraction

 Lukáš et al's model for SPN extraction (IEEE TIFS 2006)

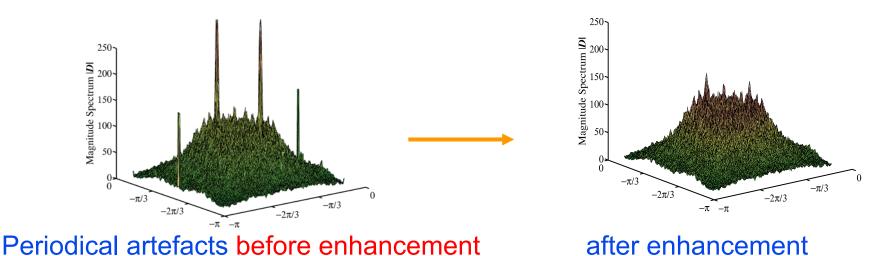
SPN: n = I(i, j) - I'(i, j)

 $I' = Weiner _ filter(I)$


- -I is the original image
- I' is the low-pass filtered version of I
- SPN is the high-frequency component of the image.

Interference from Scene Details

• Scene details also contribute to the high-frequency components of images.



• C.-T. Li, "Source Camera Identification Using Enhanced Sensor Pattern Noise," IEEE Trans. on Information Forensics and Security, 2010

Other Sources of Interference

• Periodical operation: e.g., JPEG, demosaicking

• X. Lin and C.-T. Li, "*Preprocessing Reference Sensor Pattern Noise via Spectrum Equalization*," IEEE Trans. on Information Forensics and Security, 2016

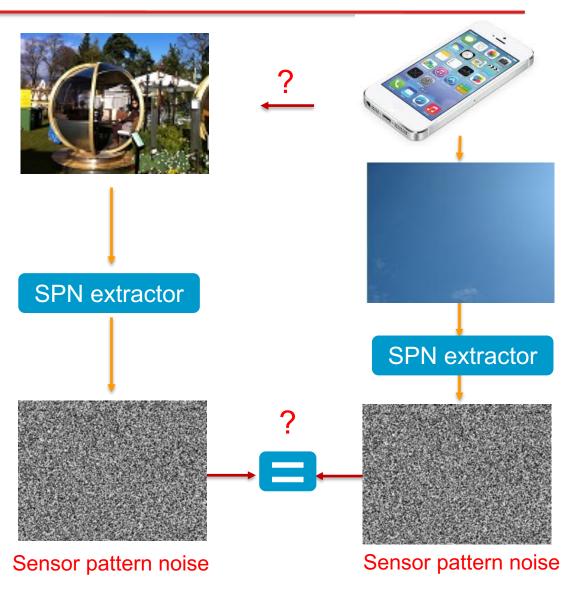
 C.-T. Li and Y. Li, "Color-Decoupled Photo Response Non-Uniformity for Digital Image Forensics," IEEE Trans. on Circuits and Systems for Video Technology, 2012

Other Sources of Interference

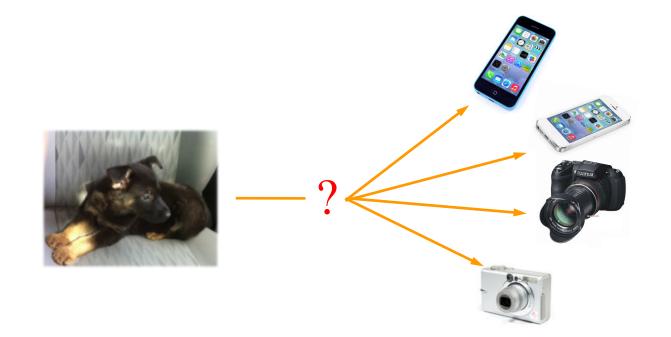
• Filters used in SPN extraction

SPN: n = I(i, j) - I'(i, j)

 $I'=Weiner_filter(I)$


 X. Lin and C.-T. Li, "Enhancing Sensor Pattern Noise via Filtering Distortion Removal," IEEE Signal Processing Letter, 2016

Source Device Verification


- Task: Determine whether a given image is taken with a particular device based on device "fingerprints"
- Similarity: Normalized Cross Correlation

$$\rho(i,j) = \frac{(n_i - n_i) \cdot (n_j - n_j)}{\left\| n_i - n_i \right\| \cdot \left\| n_j - n_j \right\|}$$

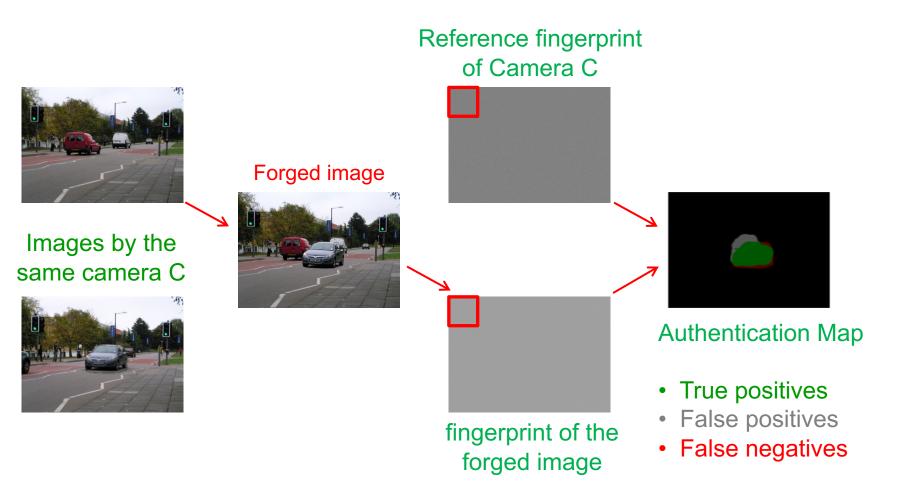
Source Device Identification

• Task: Given an image and the reference SPNs of *k* cameras, identify the camera that has taken the image

Charles Sturt University

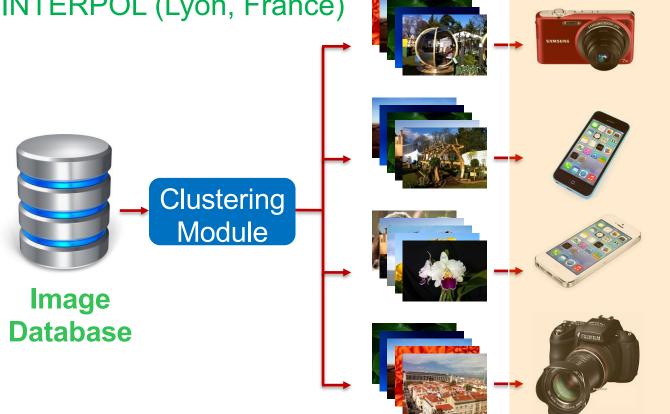
Common Source Inference

• Task: determine whether two images are taken by the same camera or not without possessing the camera


Real-World Applications

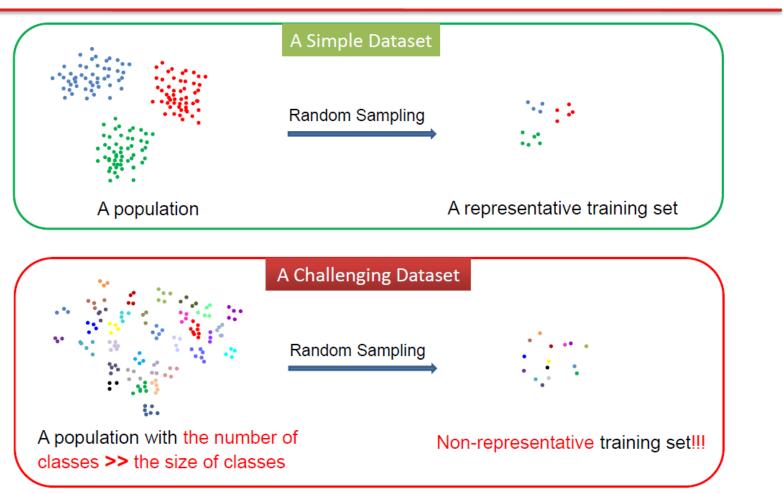
• Sussex Police (UK)

- Linking child pornography to an offender's mobile phone
- Leading to a 9-year prison sentence using SPN in 2014
- Guildford Crown Court (UK)
 - Linking a set of voyeuristic videos in the disk of a spy camera to another video store in the defendant's mobile phone original produced by the defendant's spy camera
 - Defendant pleading guilty for installing spy camera in June 2016


Content Authentication

Source-Oriented Image Clustering

- Objective: each formed group contains only images taken by the same camera
- Significance: establishing relationship among images
- Delivered to INTERPOL (Lyon, France)



Charles Sturt

Universitv

unavailable

Novelty of Our Clustering Alg

X. Lin and C.-T. Li, "*Large-Scale Image Clustering based on Camera Fingerprint*," IEEE Transactions on Information Forensics and Security, vol. 12, no. 4, pp. 793 – 808, April 2017

Charles Sturt University

Conclusions

- Device fingerprint can facilitate
 - Source Device Verification
 - Source Device Identification
 - Common Source Inference
 - Content Authentication
 - Source-Oriented Image Clustering
- Multimedia forensics through device fingerprint analysis is of great interest to law enforcement.
- The most promising fingerprint is SPN at the moments
- Many future works to be done

Future Works

- We have the following now:
 - Lens aberrations
 - Colour filter array (CFA) interpolation artefacts
 - Camera Response Function (CRF)
 - Quantisation table of JPEG compression
 - Sensor pattern noise
- Any other modalities?
- Any way to fuse them?

Future Works

Issues surrounding SPN:

- A compact representation of SPN is needed for fast search and clustering: SPN is as big as the host image
- SPN is removable: sensitive to compression, transcoding, blurring, etc.
- SPN is replaceable!