

Location Privacy Protection

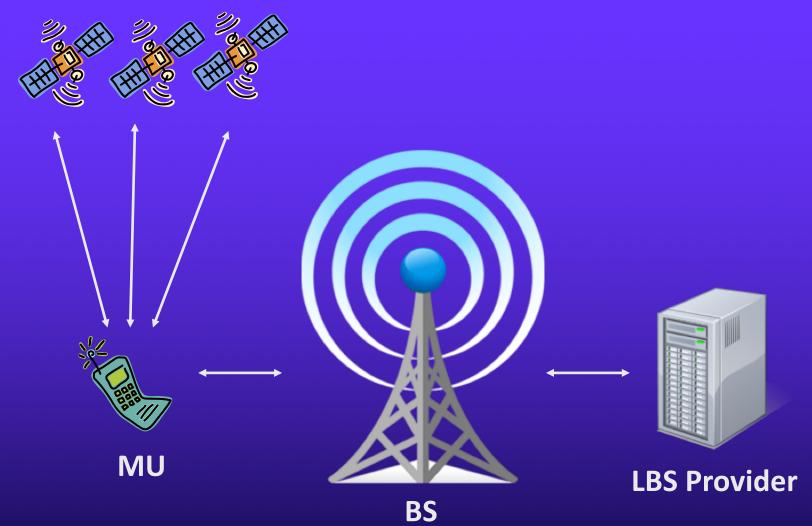
Xun Yi

RMIT University

Outlines

- privacy issues with LBS
- existing privacy-preserving solutions for LBS and problems
- our model for private location-based queries
- our solutions for private location-based queries
- security and performance analysis
- conclusions

Location-Based Service (LBS) (point-of-interest (POI) query)

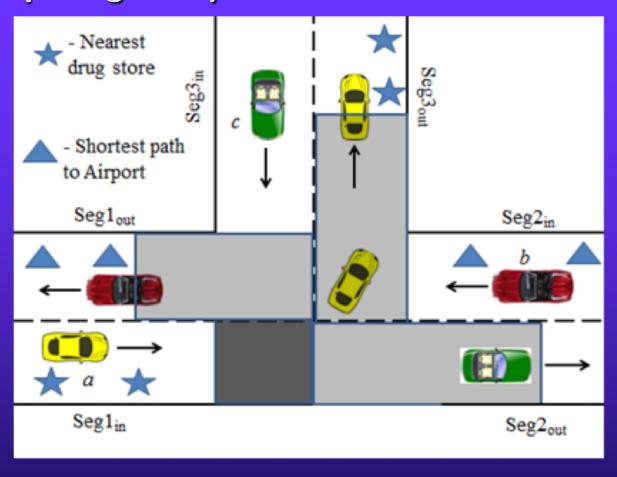


Privacy issues with LBS

- user privacy (location privacy)
- location information collected from mobile users can reveal far more than just a user's latitude and longitude. Knowing where a mobile user is can mean knowing what he is doing
- private location
- server privacy (data privacy)
 - server provides LBS for business purpose
 - payment per query, one record per query

Existing solutions

mix zone (Beresford and Stajano, IEEE Pervasive Computing 2003)



Cont.

 k-anonymity (Mokbel et al., VLDB 2006 / Bamba et al., WWW 2008)

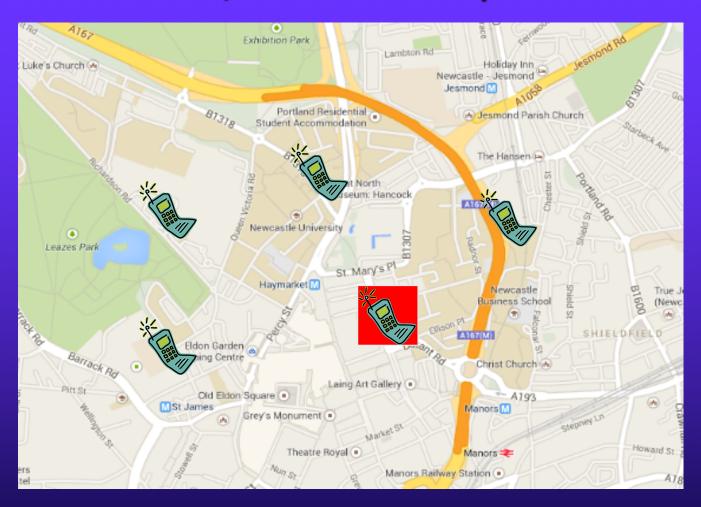
> k-anonymity (k=3)

Can identify the user's detailed location from latitude and longitude.

When the location information is blurred, it becomes impossible to tell who is where in the circle.

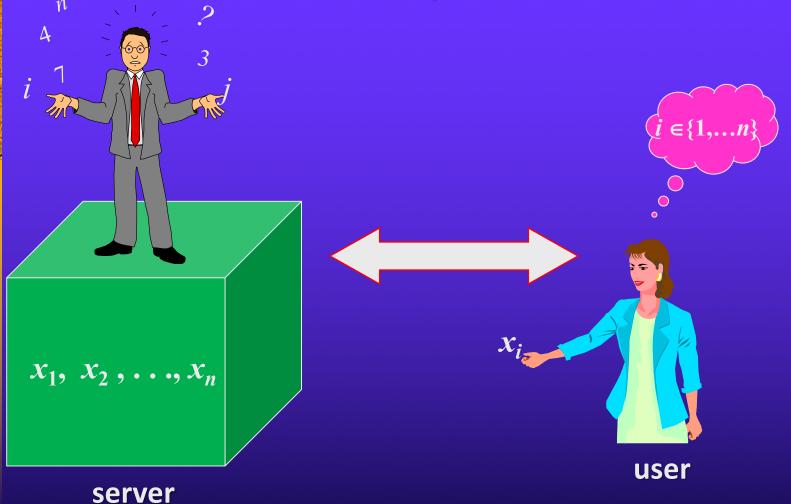
Cont.

 "dummy" locations (Kido et al., ICPS 2005 / Shankar et al., UBICOMP 2009)



Cont.

 private information retrieval (PIR) (Ghinita et al., WWW 2007 and SIGMOD 2008 / Yi et al. ICDE 2012 and IEEE TKDE)

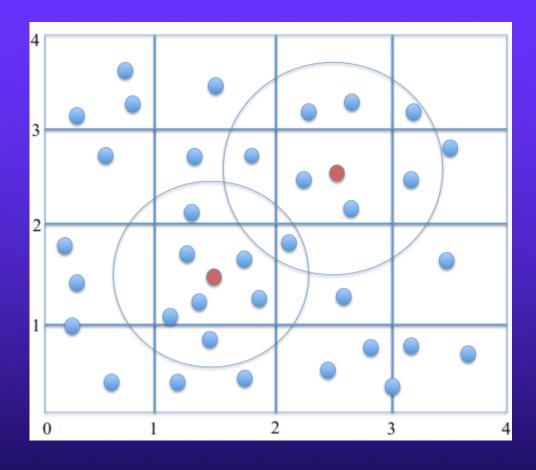


Problems

- mix zone and k-anonymity require the middleware that maintains all user locations
- k-anonymity is not suitable for location privacy protections, where the notion of distance between locations is important
- "dummy" locations require the mobile user randomly to choose and send a set of fake locations to the LBS and to receive the false reports from the LBS

Two Problems

- k nearest neighbor queries
- type of point-of-interest



Our model

- 1) Query Generation
 (Q,s)=QG(CR,n,m,(i, j),t)
 - 2

2) Response Generation R=RG(Q,D)

R

3) Response Retrieval kNN=RR(R,s)

Mobile User

LBS Provider

Query generation [solution 1] (without server privacy) (Paillier)

Algorithm 1 Query Generation (User)

Input: CR, n, (i, j)

Output: Q, s

- 1: Randomly choose two large primes p,q such that N=pq>M.
- 2: Let $sk = \{p, q\}$ and $pk = \{g, N\}$, where g is chosen from \mathbb{Z}_{N^2} and its order is a nonzero multiple of N.
- 3: For each $\ell \in \{1, 2, \dots, n\}$, pick a random integer $r_{\ell} \in \mathbb{Z}_{N^2}^*$, compute

$$c_{\ell} = \begin{cases} Encrypt(1, pk) = g^{1}r_{\ell}^{N} \pmod{N^{2}} & \text{if } \ell = i \\ Encrypt(0, pk) = g^{0}r_{\ell}^{N} \pmod{N^{2}} & \text{otherwise} \end{cases}$$

where the encryption algorithm is described in the Paillier cryptosystem (please refer to Appendix A).

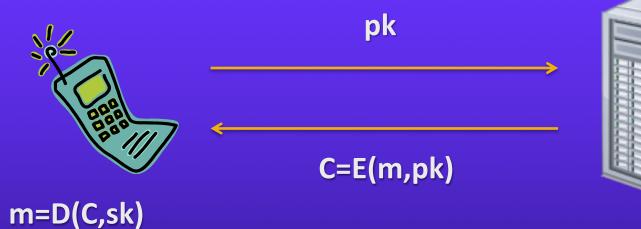
- 4: Let $Q = \{CR, n, c_1, c_2, \cdots, c_n, pk\}, s = sk$.
- 5: **return** Q, s

Public key cryptosystem

Key Generation → (pk,sk)

pk: encryption key

sk: decryption key



Response generation [solution 1]

Algorithm 2 Response Generation RG (Server)

Input: $D, Q = \{CR, n, c_1, c_2, \cdots, c_n, (g, N)\}$

Output: $R = \{C_1, C_2, \cdots, C_n\}$

1: Based on CR and n, compute $R = \{C_1, C_2, \dots, C_n\}$ where for $\gamma = 1, 2, \dots, n$,

$$C_{\gamma} = \prod_{\ell=1}^{n} c_{\ell}^{d_{\ell,\gamma}} \pmod{N^2}$$

2: return R

Paillier cryptosystem has two homomorphic properties: $E(m_1)E(m_2)=E(m_1+m_2)$, $E(m_1)^{m_2}=E(m_1m_2)$

Location-based database

column j changes

row i changes

$$\begin{bmatrix} d_{1,1} & d_{1,2} & \cdots & d_{1,j} & \cdots & d_{1,n-1} & d_{1,n} \\ d_{2,1} & d_{2,2} & \cdots & d_{2,j} & \cdots & d_{2,n-1} & d_{2,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ d_{i,1} & d_{i,2} & \cdots & d_{i,j} & \cdots & d_{i,n-1} & d_{i,n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ d_{n-1,1} & d_{n-1,2} & \cdots & d_{n-1,j} & \cdots & d_{n-1,n-1} & d_{n-1,n} \\ d_{n,1} & d_{n,2} & \cdots & d_{n,j} & \cdots & d_{n,n-1} & d_{n,n} \end{bmatrix}$$

$$c_{\gamma}^{d_{i,j}}: E(0)^{d_{i,j}} = E(0), E(1)^{d_{i,j}} = E(d_{i,j})$$

Response retrieval [solution 1]

Algorithm 3 Response Retrieval RR (User)

Input: $R = \{C_1, C_2, \cdots, C_n\}, sk = s$

Output: d

1: Compute

$$d = Decrypt(C_j, sk),$$

where the decryption algorithm is described in the Paillier cryptosystem (please refer to Appendix A).

2: return d

$$E(d_{i,1}), \cdots, E(d_{i,j}), \cdots, E(d_{i,n})$$

Query generation [solution 2] (with server privacy)

Algorithm 4 Query Generation (User)

Input: CR, n, (i, j)

Output: Q, s

- 1: Randomly choose two large primes p, q such that N = pq > M.
- 2: Let $sk = \{p, q\}$ and $pk = \{g, N\}$, where g is chosen from \mathbb{Z}_{N^2} and its order is a nonzero multiple of N.
- 3: For each $\ell \in \{1, 2, \dots, n\}$, pick a random integer $r_{\ell} \in \mathbb{Z}_{N^2}^*$, compute

$$c_{\ell} = \begin{cases} Encrypt(1, pk) = g^{1}r_{\ell}^{N} \pmod{N^{2}} & \text{if } \ell = i \\ Encrypt(0, pk) = g^{0}r_{\ell}^{N} \pmod{N^{2}} & \text{otherwise} \end{cases}$$

4: Pick a random integer $r \in \mathbb{Z}_{N^2}^*$, compute

$$c = Encrypt(j, pk) = g^j r^N \pmod{N^2}$$

- 5: Let $Q = \{CR, n, c_1, c_2, \cdots, c_n, c, pk\}, s = sk$.
- 6: **return** Q, s

Response generation [solution 2]

Algorithm 5 Response Generation RG (Server)

Input: $D, Q = \{CR, n, c_1, c_2, \cdots, c_n, c, (g, N)\}$

Output: $R = \{C_1, C_2, \cdots, C_n\}$

1: Based on CR and n, compute $R = \{C_1, C_2, \dots, C_n\}$ where for $\gamma = 1, 2, \dots, n$,

$$C_{\gamma} = (c/g^{\gamma})^{w_{\gamma}} \prod_{\ell=1}^{n} c_{\ell}^{d_{\ell,\gamma}^{2}} \pmod{N^{2}},$$

where w_t is randomly chosen from \mathbb{Z}_N^* .

2: return R

Location-based database (Rabin)

column j changes

row i changes

$$\begin{bmatrix} d_{1,1}^2 & d_{1,2}^2 & \cdots & d_{1,j}^2 & \cdots & d_{1,n-1}^2 & d_{1,n}^2 \\ d_{2,1}^2 & d_{2,2}^2 & \cdots & d_{2,j}^2 & \cdots & d_{2,n-1}^2 & d_{2,n}^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ d_{i,1}^2 & d_{i,2}^2 & \cdots & d_{i,j}^2 & \cdots & d_{i,n-1}^2 & d_{i,n}^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ d_{n-1,1}^2 & d_{n-1,2}^2 & \cdots & d_{n-1,j}^2 & \cdots & d_{n-1,n-1}^2 & d_{n-1,n}^2 \\ d_{n,1}^2 & d_{n,2}^2 & \cdots & d_{n,j}^2 & \cdots & d_{n,n-1}^2 & d_{n,n}^2 \end{bmatrix}$$

$$c_{\gamma}^{d_{i,j}^2}: E(0)^{d_{i,j}^2} = E(0), E(1)^{d_{i,j}^2} = E(d_{i,j}^2)$$

Why Rabin public key encryption?

 It can prevents dishonor user from retrieving more records

$$c_1 = E(1), c_i = E(1), c_k = E(0), d_{1,j} + d_{i,j}$$

 $c_1 = E(1), c_i = E(1), c_k = E(0), d_{1,j}^2 + d_{i,j}^2$

- Rabin public key encryption is the simplest
- Rabin and Paillier can share the same public key and private key

Response retrieval [solution 2]

Algorithm 6 Response Retrieval RR (User)

Input: $R = \{C_1, C_2, \cdots, C_n\}, sk = s$

Output: d

1: Compute

$$C'_{j} = PaillierDecrypt(C_{j}, sk),$$

where the decryption algorithm is described in the Paillier cryptosystem (please refer to Appendix A).

2: Compute

$$d = RabinDecrypt(C'_j, sk),$$

where the decryption algorithm is described in the Rabin cryptosystem (please refer to Appendix B).

3: **return** *d*

$$E(r_1), \cdots, E(d_{i,j}^2), \cdots, E(r_n)$$

Query generation [solution 3] (based on POI type)

Algorithm 7 Query Generation (User)

Input: CR, n, m, (i, j), t

Output: Q, s

- 1: Randomly choose two large primes p_1, q_1 such that $N_1 =$ $p_1q_1 > M$.
- 2: Randomly choose two large primes p_2, q_2 such that $N_2 =$ p_2q_2 , where $N_1^2 < N_2 < N_1^4$.
- 3: Let $sk_1 = \{p_1, q_1\}, sk_2 = \{p_2, q_2\}, pk_1 = \{g_1, N_1\},$ $pk_2 = \{g_2, N_2\}$, where g_1 is chosen from $\mathbb{Z}_{N_1^2}$ and its order is a nonzero multiple of N_1 and g_2 is chosen from $\mathbb{Z}_{N_2^2}$ and its order is a nonzero multiple of N_2 .
- 4: For each $\ell \in \{1, 2, \dots, m\}$, pick a random integer $r_{\ell} \in$ $\mathbb{Z}_{N^2}^*$, compute

$$c_{\ell} = \begin{cases} E(1, pk_1) = g_1^{-1} r_{\ell}^{N_1} \pmod{N_1^{-2}} & \text{if } \ell = t \\ E(0, pk_1) = g_1^{-0} r_{\ell}^{N_1} \pmod{N_1^{-2}} & \text{otherwise} \end{cases}$$

5: For each $\ell \in \{1, 2, \dots, n\}$, pick a random integer $r'_{\ell} \in$ $\mathbb{Z}_{N_2^2}^*$, compute

$$c'_{\ell} = \begin{cases} E(1, pk_2) = g_2^{-1} r'_{\ell}^{N_2} \pmod{N_2^{-2}} & \text{if } \ell = i \\ E(0, pk_2) = g_2^{-0} r'_{\ell}^{N_2} \pmod{N_2^{-2}} & \text{otherwise} \end{cases}$$

6: Pick a random integer $r \in \mathbb{Z}_{N_2^2}^*$, compute

$$c = E(j, pk_2) = g_2^{\ j} r^{N_2} (mod\ N_2^{\ 2})$$

- 7: Let $Q = \{CR, n, m, c_1, c_2, \dots, c_m, c'_1, c'_2, \dots, c'_n, c, pk_1, plaintext space \}$ pk_2 , $s = \{sk_1, sk_2\}.$
- 8: return Q, s

Paillier 1: t

Paillier 2: (i,j)

ciphertext space

Response generation [solution 3]

Algorithm 8 Response Generation RG (Server)

Input: $D, Q = \{CR, m, n, c_1, c_2, \cdots, c_m, c'_1, c'_2, \cdots, c'_n, c, pk_1, pk_2\}$

Output: $R = \{C_1, C_2, \cdots, C_n\}$

1: Based on CR and m, for each cell (α, β) in CR, compute

$$C_{\alpha,\beta} = \prod_{\ell=1}^{m} c_{\ell}^{d_{\alpha,\beta,\ell}^2} \pmod{N_1^2}$$

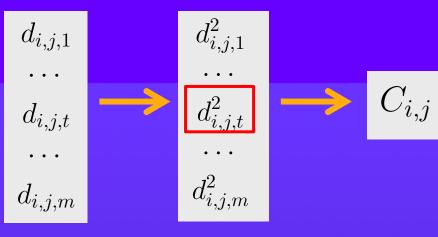
2: Based on CR and n, compute $R = \{C_1, C_2, \dots, C_n\}$, where for $\beta \in \{1, 2, \dots, n\}$,

$$C_{\beta} = (c/g^{\beta})^{w_{\beta}} \prod_{\alpha=1}^{n} c'_{\alpha}{}^{C_{\alpha,\beta}^{2}} \pmod{N_{2}^{2}},$$

where w_{β} is randomly chosen from $\mathbb{Z}_{N_2}^*$

3: return R

Location-based database (POI)



column j changes

row i changes

 $\begin{bmatrix} C_{1,1} & C_{1,2} & \cdots & C_{1,j} & \cdots & C_{1,n-1} & C_{1,n} \\ C_{2,1} & C_{2,2} & \cdots & C_{2,j} & \cdots & C_{2,n-1} & C_{2,n} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ C_{i,1} & C_{i,2} & \cdots & C_{i,j} & \cdots & C_{i,n-1} & C_{i,n} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ C_{n-1,1} & C_{n-1,2} & \cdots & C_{n-1,j} & \cdots & C_{n-1,n-1} & C_{n-1,n} \\ C_{n,1} & C_{n,2} & \cdots & C_{n,j} & \cdots & C_{n,n-1} & C_{n,n} \end{bmatrix}$

Response retrieval [solution 3]

Algorithm 9 Response Retrieval RR (User)

Input: $R = \{C_1, C_2, \cdots, C_n\}, sk$

Output: d

1: Compute

$$C'_{j} = PaillierDecrypt(C_{j}, sk_{2}).$$

where the decryption algorithm is described in the Paillier cryptosystem (please refer to Appendix A)

2: Compute

$$C_j'' = RabinDecrypt(C_j', sk_2).$$

where the decryption algorithm is described in the Rabin cryptosystem (please refer to Appendix B)

3: Compute

$$C_{j}^{""} = PaillierDecrypt(C_{j}^{"}, sk_{1}).$$

4: Compute

$$d = RabinDecrypt(C'''_j, sk_1).$$

5: return d

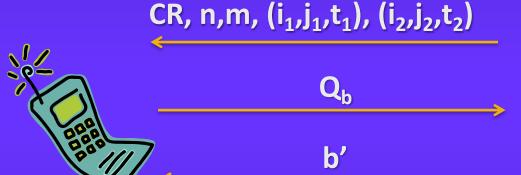
$$E(r_1), \cdots, E(C_{i,j}^2), \cdots, E(r_n)$$

Security analysis

Theorems: If the Paillier cryptosystem is semantically secure, then our kNN query protocol without data privacy / with data privacy / based on POI type has location privacy.

Location privacy definition

- 2) $b \in \{1,2\}$ $(Q_b,s) = QG(CR,n,m,(i_b, j_b, t_b))$
- given CR, n,m,
 choose (i₁,j₁,t₁),
 (i₂,j₂,t₂)



4) b=b'?

Mobile User

 $Adv_A(k)=|Prob(b'=b)-1/2|$

3) guess b'

LBS Provider (adversary A)

Performance analysis

Component	Algorithms 1-3	Algorithms 4-6	Algorithms 7-9
User Comp.	O(n)	O(n)	O(n+m)
Server Comp.	$O(n^2)$	$O(n^2)$	$O(mn^2)$
Comm.	$2n\log_2 N$	$2n\log_2 N$	$(2n+m)\log_2 N$

Component	Ghinita et al.	Paulet et al.	Our Protocol
User Comp.	$O(n^2)/O(n)$	O(1) / generate G, g, q	O(n)
		and solve discrete log	
Server Comp.	$O(n^2)/O(n^2)$	$O(n)/O(n^2)$	$O(n^2)$
Comm.	$n^2 \log_2 N/2n \log_2 N$	$2n\log_2 N/O(1)$	$2n\log_2 N$

Component	Paulet et. al	Our Protocol
Query Gen.	0.00484s / 9.6498s	0.157726s
Res. Gen.	0.11495s / 12.6978s	8.661929s
Res. Retrieval	0.0031s / 0.25451s	0.016211s

Conclusion

- location privacy issues
- survey on existing solutions
- three private kNN query protocols
- security analysis has shown that all of our protocols have location privacy
- performance has shown that our protocols are more efficient than previous PIR-based LBS query protocols. Experiment evaluation has shown that our protocols are practical
- our future work is to solve more complicated location-based queries

