
AI-Driven
Cyber
Security

Professor Yang Xiang
Digital Research & Innovation Capability Platform

Swinburne University of Technology
Email: yxiang@swin.edu.au

Research on Cyber Security @ Swinburne
• A team of world leading capabilities

in cyber security
• We develop innovative technologies

for securing cyberspace
• We work with industry and

government to provide protection
from major cyber security threats

Core Capabilities @ Swinburne

• FinTech and blockchain

• Risk and decision making

• Trustworthiness

• Data privacy

• Spam detection

Application
security

• Security analytics

• Threat prediction

• Machine learning for cyber

• Social networks security

• Insider attacks detection

Data security

• Network, SDN, NFV
security

• Cloud security

• CPS/IoT security

• Ransomware/Malware

• Autonomous security

System securityH
a

rd
w

a
re

–
So

ft
w

a
re

–
D

at
a

–
Se

rv
ic

e

• Dedicated Equipment • Huge Amount of Data

Cutting Edge Facilities

Real-world DataSecurity
Modelling
Reasoning

Research Methodology

AI-driven
Cyber

Security

Cyber
threat

analysis

Model
security
problem

Data
collectionlearning

application

Machine
learning

customization

Representation

Research Methodology

Use Cases

AI-Driven Cyber Security

Deep
vulnerable

code
analysis

ML based
malware
detection

Insider
attack

prediction

Adversarial
machine
learning

Security
incident

prediction

Intelligent
network

monitoring
...

Project – Ransomware Detection
• A ransomware attack can

encrypt critical data, causing
huge damages
• Our research
• Ransomware life cycle
• Software similarity and

classification
• Propagation modelling
• Intelligent detection
• Global sensors

Project – Insider Attack Detection
• Insider attacks are highlighted as “the most damaging risk”

• We design a novel fine-grained anomaly behaviour identification system to predict cyber insider attacks
• It can analyse big behaviour data, making real-time decision, and learning varying behaviour features,

• It can provide maximised protection to large-scale private networks

Project – Deep Learning for Cyber
• Deep Learning techniques to

discover vulnerabilities in
source and/or binary code
bases
• Deep source analysis: New

approaches, classification with
representation learning and deep
learning with multiple sources for
code analysis
• Deep binary analysis: Innovatively

convert binary code to different
data presentation such as image,
and employ deep neural
networks to assist binary analysis

Project – Adversarial Machine Learning for
Cyber
• Advance the unexplored territory

of adversarial machine learning
defences, with focus on network
security
• Randomised projection reducing

the curse of dimensionality that
benefits attackers
• Game theoretic formulations that

seek limit points of cat-and-mouse
attack and defence

Project – Classifying Internet Traffic for
Security Applications
• Develop a set of novel

techniques for Internet traffic
classification, which is important
to defend against the serious
cyber-attacks and effectively
minimise the damage
• Real-time
• Scalable
• Robust
• Private

How AI that uses machine learning and other
technologies can differentiate benign or harmful

binary or source codes?

Detecting Software Vulnerabilities

Significance

Software vulnerabilities can critically:
• undermine the security of computer systems
• endanger the IT infrastructure of organizations

Intel Chip Vulnerabilities

High-impact Vulnerabilities

“Heartbleed” in OpenSSL library

High-impact Vulnerabilities

“Heartbleed” in OpenSSL library

Accounted for almost
66% of active websites
on the Internet.

Spreading of WannaCry

A Realistic Example – Heartbleed Vulnerability
There is no validation of the size of the variable payload

Server’s memory

Actual payload size (4K)

The false payload size 64K

…..

60K of server’s memory

A Realistic Example – Heartbleed Vulnerability
The integer payload is defined by the macro
n2s that reads a sixteen bit integer from a network
stream.

Hence, there is a need to inspect:

1) How information propagates from one statement to
another

2) How the information flow is controlled by conditions

Challenges

1. The growing complexity of software

50 million lines of code (Millions)

Challenges

2. Vulnerabilities are plenty
• Over 15,000 vulnerabilities reported in 2016 (over 280/week)

56%
44%

Not Published Publicly Available

High
Severity

21%

Normal
79%

Challenges

3. Vulnerabilities are difficult to detect
• Tedious and time-consuming

• Sufficient understandings of projects and knowledge of security required

• Security considerations are not prioritized and well-recognized

Scope

Code Analysis for Cyber security

Software Engineering

Program Analysis Software Testing

Cyber security

Machine
Learning/Data

Mining

DataData with
Labels

Feature
Engineering

Software
engineering

Data-mining
Machine
Learning

Cybersecurity

ML
Algorithms Evaluation

Cybersecurity

Machine Learning’s Perspective

Feature Engineering
How do we convert vulnerable code to effective features?

Features that are:
• Representative
• Invariant
• Distinctive

Classifiers

Source code

Pre-process

Feature Engineering
How do we convert vulnerable code to effective features?

Features that are:
• Representative
• Invariant
• Distinctive

ClassifiersPre-process

Binary

Feature Engineering
How do we convert vulnerable code to effective features?

Features that are:
• Representative
• Invariant
• Distinctive

ClassifiersPre-process

Binary

Feature Engineering

“Patterns”

Pre-process Features

How do we convert vulnerable code to effective features?

“Text”

“Code
Properties”

Feature Engineering
How to convert vulnerable code to effective features?

“Patterns”

Trees

Graphs

….

Abstract Syntax Trees

Function Call Graphs

Data Flow Graphs
Control Flow Graphs

….
Dependency Graphs

Feature Engineering

Features that are:
• Representative
• Invariance
• Distinctive

Patterns

Pattern recognition problems

How to convert vulnerable code to effective features?

Feature Engineering
How to convert vulnerable code to effective features?

Features that are:
• Representative
• Invariance
• Distinctive

Text

Natural Language Processing (NLP) Problem

Feature Engineering
How to convert vulnerable code to effective features?

Code
Properties

Source code

Feature Engineering

Developer
relationshipsWritten by developers

Developer & file
relationships

Graphical
models

How to convert vulnerable code to effective features?

DataData with
Labels

Feature
Engineering

ML
Algorithms Evaluation

Machine Learning Algorithms

Research Trends

LR, RF and SVM… Transfer Learning,
Deep Learning

Semi-supervised
methods, Markov

Models, NLP…

Research Trends

Source Binary

Component File Function Code
Gadgets

Yes/No Specific Type Multiple types

LR, RF and SVM… Transfer Learning, Deep
Learning

Semi-supervised
methods, Markov Model,

NLP…

Desktop
Apps Mobile Apps Web-based

Apps
Commercial

Apps

Our work

• Vulnerability Discovery with Function Representation Learning
from Unlabeled Projects (accepted by CCS2017 Poster)
ü Function-level detection

ü Cross-project scenario

ü Representation learning with deep learning approach

TaxonomyTaxonomy

Taxonomy

Key Assumptions
1. Vulnerable programming patterns are associated with many vulnerabilities, and these
patterns can be revealed by analysing the program’s ASTs

Research Question
1. How do we covert ASTs to vectors acceptable by ML algorithms while preserving the
structural information?

[foo, int, params, param, int, x, stmnts, decl, int, y, op, =, call, bar, arg, x, for, int, i, … return , y]

Depth-first Traversal

Key Assumptions
2. The sequence of elements in the textual vectors resembles sequences of words in
natural language.

[foo, int, params, param, int, x, stmnts, decl, int, y, op, =, call, bar, arg, x, for, int, i, … return , y]

[Hi, everyone, my, name, is, Guanjun, Lin, I, am, from, China, …, I, can, speak, fluent, ,thanks]Chinese

AST: textual vector

Natural language: sentence.

Research Question
2. How do we covert ASTs to vectors acceptable by ML algorithms while preserving the
syntactic & semantic information?

[foo, int, params, param, int, x, stmnts, decl, int, y, op, =, call, bar, arg, x, for, int, i, … return , y]

Function name Data type Variable
declaration

Variable names

[25, 1, 7, 8, 16, 23, 45, 123, 569, 10, 1, 9, …., 20, 2]

Tokenization

Word2vec Embeddings

Network Design

1. Overcome the difficulty of obtaining manual labels by leveraging
well-understood complexity metrics (used as a proxy as the substitute
of data labels)

Our Work

x y≈

Code metrics

As features

2. Overcome the insufficiency of vulnerable data of the inactive open
source projects by leveraging transfer-learned representations.

Our Work

Project A Very limited
labelled data

Robust
statistical

model

Project B

Project C

Project D

Sufficient
labelled Data

2. Overcome the insufficiency of vulnerable data of the inactive open
source projects by leveraging transfer-learned representations.

Our Work

(Project B,C and D)

(Project A)

Results

Efforts Saved

Human efforts saved for manually

auditing potentially vulnerable

functions with our method.

Thank You – Q&A

