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Research on Cyber Security @ Swinburne
• A team of world leading capabilities 

in cyber security
• We develop innovative technologies 

for securing cyberspace
• We work with industry and 

government to provide protection 
from major cyber security threats



Core Capabilities @ Swinburne

• FinTech and blockchain

• Risk and decision making

• Trustworthiness

• Data privacy

• Spam detection

Application
security

• Security analytics

• Threat prediction

• Machine learning for cyber

• Social networks security

• Insider attacks detection

Data security

• Network, SDN, NFV
security

• Cloud security

• CPS/IoT security

• Ransomware/Malware

• Autonomous security
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• Dedicated Equipment • Huge Amount of Data

Cutting Edge Facilities





Real-world DataSecurity
Modelling
Reasoning



Research Methodology 

AI-driven 
Cyber 

Security

Cyber 
threat 

analysis

Model 
security 
problem

Data 
collectionlearning

application

Machine 
learning

customization

Representation 

Research Methodology 



Use Cases

AI-Driven Cyber Security

Deep 
vulnerable 

code 
analysis

ML based 
malware 
detection

Insider 
attack 

prediction

Adversarial 
machine 
learning

Security 
incident 

prediction

Intelligent 
network 

monitoring
...



Project – Ransomware Detection
• A ransomware attack can 

encrypt critical data, causing
huge damages
• Our research
• Ransomware life cycle
• Software similarity and

classification
• Propagation modelling
• Intelligent detection
• Global sensors



Project – Insider Attack Detection
• Insider attacks are highlighted as “the most damaging risk”

• We design a novel fine-grained anomaly behaviour identification system to predict cyber insider attacks
• It can analyse big behaviour data, making real-time decision, and learning varying behaviour features, 

• It can provide maximised protection to large-scale private networks



Project – Deep Learning for Cyber
• Deep Learning techniques to 

discover vulnerabilities in 
source and/or binary code 
bases
• Deep source analysis: New 

approaches, classification with 
representation learning and deep 
learning with multiple sources for
code analysis
• Deep binary analysis: Innovatively 

convert binary code to different 
data presentation such as image, 
and employ deep neural 
networks to assist binary analysis



Project – Adversarial Machine Learning for
Cyber
• Advance the unexplored territory 

of adversarial machine learning 
defences, with focus on network 
security
• Randomised projection reducing 

the curse of dimensionality that 
benefits attackers
• Game theoretic formulations that 

seek limit points of cat-and-mouse 
attack and defence



Project – Classifying Internet Traffic for 
Security Applications
• Develop a set of novel 

techniques for Internet traffic 
classification, which is important 
to defend against the serious 
cyber-attacks and effectively 
minimise the damage
• Real-time 
• Scalable
• Robust
• Private



How AI that uses machine learning and other 
technologies can differentiate benign or harmful 

binary or source codes?

Detecting Software Vulnerabilities



Significance

Software vulnerabilities can critically:
• undermine the security of computer systems
• endanger the IT infrastructure of organizations



Intel Chip Vulnerabilities



High-impact Vulnerabilities

“Heartbleed” in OpenSSL library



High-impact Vulnerabilities

“Heartbleed” in OpenSSL library

Accounted for almost
66% of active websites
on the Internet.



Spreading of WannaCry



A Realistic Example – Heartbleed Vulnerability
There is no validation of the size of  the variable payload

Server’s memory

Actual payload size (4K)

The false payload size 64K

…..

60K of server’s memory 



A Realistic Example – Heartbleed Vulnerability
The integer payload is defined by the macro 
n2s that reads a sixteen bit integer from a network 
stream.

Hence, there is a need to inspect:

1) How information propagates from one statement to
another 

2)  How the information flow is controlled by conditions



Challenges

1. The growing complexity of software

50 million lines of code (Millions)



Challenges

2.  Vulnerabilities are plenty
• Over 15,000 vulnerabilities reported in 2016 (over 280/week) 

56%
44%

Not Published Publicly Available

High 
Severity

21%

Normal
79%



Challenges

3.  Vulnerabilities are difficult to detect
• Tedious and time-consuming

• Sufficient understandings of projects and knowledge of security required

• Security considerations are not prioritized and well-recognized 



Scope

Code Analysis for Cyber security

Software Engineering

Program Analysis        Software Testing 

Cyber security

Machine 
Learning/Data 

Mining



DataData with 
Labels

Feature 
Engineering

Software 
engineering

Data-mining
Machine 
Learning

Cybersecurity

ML 
Algorithms Evaluation

Cybersecurity

Machine Learning’s Perspective



Feature Engineering
How do we convert vulnerable code to effective features?

Features that are:
• Representative
• Invariant
• Distinctive

Classifiers

Source code

Pre-process



Feature Engineering
How do we convert vulnerable code to effective features?

Features that are:
• Representative
• Invariant
• Distinctive

ClassifiersPre-process

Binary



Feature Engineering
How do we convert vulnerable code to effective features?

Features that are:
• Representative
• Invariant
• Distinctive

ClassifiersPre-process

Binary



Feature Engineering

“Patterns”

Pre-process Features

How do we convert vulnerable code to effective features?

“Text”

“Code 
Properties”



Feature Engineering
How to convert vulnerable code to effective features?

“Patterns”

Trees

Graphs

….

Abstract Syntax Trees

Function Call Graphs

Data Flow Graphs
Control Flow Graphs

….
Dependency Graphs



Feature Engineering

Features that are:
• Representative
• Invariance
• Distinctive

Patterns

Pattern recognition problems

How to convert vulnerable code to effective features?



Feature Engineering
How to convert vulnerable code to effective features?

Features that are:
• Representative
• Invariance
• Distinctive

Text

Natural Language Processing (NLP) Problem



Feature Engineering
How to convert vulnerable code to effective features?

Code 
Properties

Source code



Feature Engineering

Developer
relationshipsWritten by developers

Developer & file
relationships

Graphical 
models

How to convert vulnerable code to effective features?



DataData with 
Labels

Feature 
Engineering

ML 
Algorithms Evaluation

Machine Learning Algorithms

Research Trends

LR, RF and SVM… Transfer Learning, 
Deep Learning

Semi-supervised 
methods, Markov 

Models, NLP…



Research Trends

Source Binary

Component File Function Code 
Gadgets

Yes/No Specific Type Multiple types

LR, RF and SVM… Transfer Learning, Deep 
Learning

Semi-supervised 
methods, Markov Model, 

NLP…

Desktop 
Apps Mobile Apps Web-based 

Apps
Commercial 

Apps



Our work

• Vulnerability Discovery with Function Representation Learning 
from Unlabeled Projects (accepted by CCS2017 Poster)
ü Function-level detection

ü Cross-project scenario

ü Representation learning with deep learning approach



TaxonomyTaxonomy



Taxonomy



Key Assumptions
1. Vulnerable programming patterns are associated with many vulnerabilities, and these 
patterns can be revealed by analysing the program’s ASTs 



Research Question
1. How do we covert ASTs to vectors acceptable by ML algorithms while preserving the 
structural information? 

[foo, int, params, param, int, x, stmnts, decl, int, y, op, =, call, bar, arg, x, for, int, i, … return , y]

Depth-first Traversal



Key Assumptions
2. The sequence of elements in the textual vectors resembles sequences of words in 
natural language.

[foo, int, params, param, int, x, stmnts, decl, int, y, op, =, call, bar, arg, x, for, int, i, … return , y]

[Hi, everyone, my, name, is, Guanjun, Lin, I, am, from, China, …, I, can, speak, fluent,                ,thanks]Chinese

AST: textual vector

Natural language: sentence.



Research Question
2. How do we covert ASTs to vectors acceptable by ML algorithms while preserving the 
syntactic & semantic information? 

[foo, int, params, param, int, x, stmnts, decl, int, y, op, =, call, bar, arg, x, for, int, i, … return , y]

Function name Data type Variable 
declaration

Variable names

[25, 1, 7, 8, 16, 23, 45, 123, 569, 10, 1, 9, …., 20, 2]

Tokenization



Word2vec Embeddings



Network Design



1. Overcome the difficulty of obtaining manual labels by leveraging 
well-understood complexity metrics (used as a proxy as the substitute 
of data labels)

Our Work

x y≈

Code metrics

As features 



2. Overcome the insufficiency of vulnerable data of the inactive open 
source projects by leveraging transfer-learned representations.

Our Work

Project A Very limited 
labelled data

Robust 
statistical

model

Project B

Project C

Project D

Sufficient 
labelled Data



2. Overcome the insufficiency of vulnerable data of the inactive open 
source projects by leveraging transfer-learned representations.

Our Work

(Project B,C and D)

(Project A)



Results



Efforts Saved

Human efforts saved for manually

auditing potentially vulnerable

functions with our method.



Thank You – Q&A


