Security in Internet of Things

Prasant Mohapatra Department of Computer Science University of California, Davis

IoT – around us

Organization

- Introduction
- Secure Authentication
- Continuous Authentication
- Detection of Attacks
- Protection against Vulnerabilities
- Threats from Unconventional Sensing
- Visions for the Future

Secure Authentication

Authentication in Smartphones

Authentication in smartphones

- device unlock
- app login
- forum/website login

Authentication types

- Credential-based (User name / password)
 - What the user knows
 - Identity theft
 - Memory burden

Biometric Authentication

Voice

- Inconvenient, vulnerable
- Requires speaking, Background noise

Fingerprint

- Convenient, vulnerable
- Expensive hardware required
- Limited market

Face (and Iris)

- Convenient, vu nerable
- Inexpensive Use mobile camera

Compelling. Let's explore further

Facial Authentication

- Face verification / face identification
- Face recognition accuracy has been largely improved
 - Accuracy is very close to 100%
 - Even used for commercial payment systems
- Most smartphones have front-facing cameras; usually higher than 10 M pixels
 - Convenient for face capturing
 - Quality is good enough for face recognition

Current Status

Android: face unlock alternative since 4.0

- But not many users are using it
- App and website login
 - User name / password dominates other methods
- Why facial authentication is not widely used in smartphones?
 - Privacy concerns
 - Security issues
 - 2D media attacks
 - Virtual camera attacks
 - usability

2D Media Attack

Photo attack (print attack)

Use user's photo to cheat the authentication system

Video attack

- Starting from Android 4.1, eye-blink is required
- use video to compromise the system

2D Media Attack (cont.)

3D facial recognition can defend against this attack

- 3D template matching
- e.g. Toshiba Face Recognition Utility
- Difficult to use
- Turning heads towards different directions -> user's burden
 - A trial takes more than 20 seconds -> much longer than entering password
 - Even a genuine user may need multiple trials to pass

Our Method

Achieve high security and usability simultaneously

- Safe for 2D media attacks
- Safe for virtual camera attacks
- Much faster than 3D face authentication method (speed is comparable to credential-based method): ~2 sec

How?

- Only need to move the phone in front of face for a short distance
- Utilizing motion sensors in smartphones
- No need to move head and sync with directions

Counter 2D Media Attack

Idea

Nose orientation changes when moving phone horizontally if a real 3D face

Nose Angle Detection

Detect nose outline

- Video frame preprocessing
- Nose detection (can employ existing method)
- Nose outline fitting

Compare nose outline from two sides

- Motion sensors: judge the relative position between face and smartphone, picking correct frame intelligently
- Light sensor: auto boost screen brightness if dark, to enhance luminance (improve nose outline detection)

Counter Virtual Camera Attack

Idea !

- If real-time video captured by physical cam, small shakes in video should be consistent with smartphone's motion sensor readings
- Pre-recorded videos can be detected
- Assume motion sensor readings are not compromised

Motion Vector Correlation

Small motions extracted from the video

Compare with small shakes extracted from motion sensors

Evaluations

- Samsung Galaxy Nexus with 1.3M pixel frontfacing camera
- Android 4.2.2
- Video is 480*720@24fps, chopped to 480*640
- Use Haar Cascades in OpenCV to detect face and nose
- Face recognition algorithms are orthogonal to our method, but for completeness, we do include a PCA (principal component analysis) based facial identification module (also implemented using OpenCV)

Accuracy of 2D Media Attack Detection (cont.)

Accuracy compared with other state-ofart approaches

Accuracy under different illuminance

Authentication Time

PCASA: PROXIMITY-BASED CONTINUOUS AND SECURE AUTHENTICATION

Motivations for PCASA:

- Leveraging devices that are within user's vicinity and physical control
- Enable continuous authentication
- Easy to authenticate multiple devices
- Challenges:
 - RF technology unable to measure the proximity at sub-meter level due to large fluctuation of signal.
 - Current acoustic based approach:
 - 1. unable to exchange credential information among devices.
 - 2. unable to handle energy efficiency problem.

PCASA: Objective

- Security: Defend against the attackers who aim to get illegitimate access to user's portable device
- Accuracy: Estimate the proximity with submeter accuracy in real-time even when the user is mobile
- Energy Efficiency: Perform continuous authentication using acoustic signals with low energy.

PCASA: System Overview

- Vouching Device: wearable device always on the body (e.g. smartwatch, glasses)
- Authenticating Device: portable devices not always on body (e.g. laptop, tablet)

PCASA: Attack Model

• Zero-Effort Attacks

- Directly access the authenticating device while out of user's vicinity or control.
- Exist in RF based approaches.

Spoofing Attacks

- Replay Attacks: replays the recorded signal from a short distance to spoof the authenticating device
- Relay Attacks: create a faster channel to relay all messages between the vouching and authenticating devices

PCASA: Protocol - Initialization

- Initialization
 - Vouching sends message m_0 to authenticating at $t_{\nu 0}$, where m_0 contains MAC address of vouching.
 - Authenticating receives m_0 at t_{A0}
 - Authenticating sends m_1 to vouching at t_{A1} , where m_1 contains MAC address of authenticating.
 - Vouching receives m_1 at t_{V1}

PCASA: Protocol - Continuous Proximity Detection

- Continuous Proximity Detection
 - Vouching device sends message m_2 to authenticating at t_{V2} .
 - Authenticating device receives m_2 at t_{V2}
 - Authenticating device calculates its distance to vouching as follows,

 $\frac{c}{2}\left[(t_{V1} - t_{V0}) - (t_{A1} - t_{A0})\right]$

PCASA: Protocol - User Mobility

- Measure the proximity when moving
 - Calculate distance d_{AV}^0 and d_{AV}^1

•
$$d_{AV}^1 - d_{AV}^0 = v(t_{V1} - t_{V0})$$

- $d_{AV}^1 + d_{AV}^0 = c[(t_{V1} t_{V0}) (t_{A1} t_{A0})]$
- Calculate d_{AV}^2 based on d_{AV}^1
 - $d_{AV}^2 = d_{AV}^1 v(t_{V2} t_{V1})$

User Mobility – Estimate speed

- Measure the Relative Speed using Doppler Effect
 - Doppler Effect: $f = \frac{v}{v_a} f_0$
 - Example: sound at 20kHz, 1Hz shift corresponds to $\frac{1*340m/s}{20k} = 0.017m/s = 1.7cm/s$
 - two scenarios of human walk: 1) in pocket, 2) on hand

Security Analysis

- Zero-Effect Attacks can be defended as distance between vouching and authenticating can be accurately measured
- Replay Attacks will delay the message, leading to a larger arrival time, i.e. larger distance. $d_{AV}^{1} + d_{AV}^{0} = c[(t_{V1} - t_{V0}) - (t_{A1} - t_{A0})]$
- Relay Attack is impossible without attracting user's attention.

Evaluation: Experiment Setup and Implementation

- Devices: Samsung Galaxy S4(1), Samsung Galaxy S5(2), Samsung Galaxy S6(1), iPhone 6S(1), Apple Watch(1), Samsung Gear S2-LTE(1).
- Acoustic signal is generated at 20 kHz and speaker is set at the highest volume
- Sampling rate of the microphone for recording is set to 44.1kHz

Evaluation: Energy Consumption

• For the most energy consuming device – Galaxy S4, it could perform continuous authentication for up to 34 hours with the highest authentication rate

Evaluation: Speed Estimate

- Devices on hand have relatively higher estimate error than devices in the pocket.
- Error on all devices in our experiments does not exceed 0.15 m/s

(a) Device worn on wrist

Evaluation: Proximity Estimation

- Proximity estimation error increases along with the authentication interval as proximity estimate is related with speed estimate and message interval/authentication frequency
- Average error of proximity estimation is no more than 0.25m even when the user is mobile

FlowIntent: Detecting Suspicious Apps

Motivating Example

User interfaces of Two Clock apps

Motivating Example

Both apps send out user location through HTTP traffic under shown user interfaces

- Legal for the first app while suspicious for the second
- Need to understand user intention
- Vulnerability in Android permission control system
 - Mismatch between user intention and app behavior
- Standard approaches
 - Dynamic and static program analysis
 - High overhead at host end
 - Early stage on user intention modeling
Network based Detection

Objective

- Detect suspicious behavior only from network traffic data
- Incorporate user intention to improve accuracy
- Advantages
 - Low overhead at host: easy to deploy at IDS or access point
 - Monitor a large number of devices without introducing overhead at the end hosts, update-to-date signatures
- Signatures not revealed by system-level approaches
 Feasibility
 - Most suspicious traffic are transmitted with simple unencrypted HTTP requests
 - Number of malware families are not huge
 - Variants of the same malware exhibit similar behaviors

Approach Overview

Dataset

- Automatically run apps and collect their network traffic
- Identify location-sharing apps with taint analysis
- 1268 location sharing apps identified from 20,000 apps crawled from Google Play and Baidu App Market

User Intention modeling

- Features: app name, description, and user interface.
- all location transmissions from suspicious apps are marked as suspicious.
- legal apps may also generate unintended flows: some can be identified from existing black list.

Machine learning on app traffic flows

- statistical features and lexical features
- Only network level features are used in testing

System Architecture

User Intention Modeling

Model user intention from text features and GUI data

- app names, app topics
- user interfaces: currently focus on front-page UI and traffic flows under that UI
- Leverage NLP and bag-of-words to extract text features
- Evaluate classification results through 10-fold cross validation
- Better accuracy via multiple classifiers and voting

User Intention Modeling

User Intention Modeling: Results

(a) Random Forest			
	Predicted as illegal	Predicted as legal	
Illegal location-share apps	625 (98.6%)	9 (1.4%)	
Legal location-share apps	53 (8.4%)	581 (91.6%)	
(b) Naive Bayes			
	Predicted as illegal	Predicted as legal	
Illegal location-share apps	596 (94%)	38 (6%)	
Legal location-share apps	74 (11.7%)	560 (88.3%)	
(c) Logistic Regression			
	Predicted as illegal	Predicted as legal	
Illegal location-share apps	596 (94%)	38 (6%)	
Legal location-share apps	70 (11%)	564 (89%)	
(d) Voting			
	Predicted as illegal	Predicted as legal	
Illegal location-share apps	506 (98.7%)	7 (1.3%)	
Legal location-share apps	29 (6%)	460 (94.0%)	

Network-level Features

Statistical Features

- Total number of TCP packets
- Total number of uplink TCP packets
- Total number of HTTP packets (Packets with HTTP application layer present)
- Packet size of all TCP packets
- Packet size of uplink TCP packets
- Packet size of downlink TCP packets
- Time interval between two consecutive TCP packets

Lexical Features

- Binary feature for each token in the host name and in the path URL
- Length of the host name and entire URL
- Number of dots in the URL

Statistical Features

- Packet Size: Ad flows usually respond with an advertisement with larger downlink packet size than legal flows
- Time Interval: packets are sent throughout the app usage in non-location flows, but like a burst in illegal flows

(b) Max length of downlink TCP packets (bytes) (c) Time interval between two consecutive TCP packets (ms)

Lexical Features

Illegal usage of location flow

- ads.appsgeyser.com/?&guid=a5141e1d&tlat=38.5320 3&tlon=-121.759603&p=android&test=1
- "ads" prefix indicates the advertisement purpose of the request.
- Location-sharing flow generated by a weather forecast application begins with the URL
 - v.juhe.cn/weather/geo?&lon=-121.750683&lat=38.540323
 - "weather" suggests the server behind the URL is a weather information provider

Traffic Classification

- All location flows generated by suspicious apps are marked as suspicious.
- Utilize existing bad host names list to remove suspicious flows generated by legal apps, and label rest flows as benign.
 - domain names of malware, ad and analytics servers
- Achieves a precision of 91.3% by using both statistical and lexical features. When true app classes are used, the precision increases to 92.8%.
 - Ground truth for unencrypted flows: manually check URL and plain text inside payload
 - Ground truth for encrypted flows: use firewall to block flows and examine its effect on app behavior
 - 10-fold cross validation
 - Our user intention modeling only incurs a slight loss in accuracy, while saving the effort of manually labeling a large number of apps

iType: Using Eye Gaze to Enhance Typing Privacy

Wearables

- Accelerometers
- Gyroscope
- Ambient light sensor
- Hart rate sensor
- Magnetometer
- GPS

...

 \bullet

Extend beyond timing \rightarrow daily life

[1] https://www.iphones.ru/wp-content/uploads/2015/05/main.jpg

However

Explicitly typing sensitive info.

- Password
- Personal data
- Security code
- •

Continuously sense hand moves

- Accelerometers
- Gyroscope
- •••••

Wait a moment ...

Touch IDBut

Account login

Explicit Textual-Input is unavoidable

Our idea for protection

Eye gaze for input From camera

- Secure
 - Back
 - A keyboard
 - Front
 - Difficult to distinguish
 - Keyboard layout may change

iType framework

value in error correction

Problem statement:

Gaze tracker training [5]:

[5] "ishadow: design of a wearable, real-time mobile gaze tracker", in Proc. of ACM MobiSys, 2014.

Problem statement:

Formal description

Min. samples to achieve certain confidence?

Solution overview (*n* gaze points) $(\bar{x} - \frac{t_{\frac{\alpha}{2}}}{\sqrt{n}}S_x, \bar{x} + \frac{t_{\frac{\alpha}{2}}}{\sqrt{n}}S_x)$

$$S_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

At least (1- alpha)

Keystroke detection

When to start: KL divergence

When to stop:
 Approximation

Other modules

Joint decoding

Evaluation

Overall performance

Individual keystroke:

- Accuracy
 - Static: 97%
 - Dynamic: 89%
- Latency
 - Static: 2.0s
 - Dynamic: 2.6s

Unconventional Sensing

Voice Control

Popular on smartphones

- Electronic assistant (Google now, Apple Siri)
- Primary method of interaction for wearables (smartwatch, smartglass)
 - Touch not always feasible for wearables

ok glass, record a video get directions to... send a message to... make a call to... make a video call to...

Internet-Of-Things (IoT) applications

- Low-cost, low-power, pervasive
- Example: Amazon Echo smart speaker

Current Voice Control Applications

Hotword detection

- Detect the hotword "Ok Google", "Hi Galaxy" etc. to start voice control
- Distinguishes between voice command and other conversations

Continuous audio sensing

- "Always" listen for hotword
- Energy expensive

• Unsuitable for low-power devices

Motivation - Energy Hungry Voice Control

Current voice control and hotword detection is energy inefficient
 Microphone sampling rate - 44 KHz

AccelWord - Hotword Sensing using Acclerometer

Accelerometer sensor

- Included in almost all smart devices (phones, watches, glasses etc.)
- Primary purpose to sense motion
- Low-cost (< \$5) and low energy (sampling < 200 Hz)

AccelWord idea

- Empirical evidence that accelerometers are sensitive to spoken voice
- Accelerometer registers acceleration when audio signals strike the inertial mass
- Can we "listen" using accelerometer?

Hotword Detection using Accelerometer

Can we use accelerometer to "listen" for hotwords?

 If the hotword is detected using accelerometer, start the microphone for complete voice recognition

Advantage - lower energy consumption compared to microphone

- 20 Hz 22 KHz human voice modulated on 200 Hz accelerometer samples
- Lower sampling results in low-power sensing

AccelWord Challenges

Hotword recognition

- Can accelerometer distinguish between hotword and other words?
- Complete speech recognition is difficult

Human mobility interference

 How to remove the mobility-related acceleration to distill voicerelated acceleration data?

Noise cancellation

- Advanced techniques already exist for microphone to remove background noise
- Is the impact of background noise on accelerometer too detrimental?

Security Threat !

Performance Evaluation

10 volunteers

• 5 females and 5 males

Two smartphones

• Samsung Galaxy S4 and Google Nexus S

Comparison with

- Google Now and Samsung S Voice
- TP rate, FP rate and energy

Training and testing instances

- Hotword instances 5 mobile, 5 stationary (100 times)
- Other random sentences 20 (200 times)

Hotword Detection Accuracy

Trained and tested with the same SPL

• TP rate measures the fraction of hotword instances correctly detected from all spoken instances including random sentences

Hotword Detection Accuracy

Trained and tested with different SPL

 Lower TP rate compared to the case where classifier is trained and tested with same SPL

Energy Efficiency

Energy savings mostly attributed to low-cost sensing through accelerometer

• With optimized implementation of AccelWord, further processing-related savings can be achieved

	Energy Saving (%)	
alaxy S4 – I	Nexus S	
46.19%	53.85%	
57.14%	N/A	

Securing the IoTs of Future!

- More and more IoTs will be invading the space around us
- Exploitation of cyber sensing and physical sensing can be done in an integrated manner
- IoTs will learn and adapt to the environments
- Adversarial IoTs will evolve
- Safeguarding Adversarial Machine Learning will bring in complex challenges
- Containment and isolation of compromised IoTs will be a new topic of research

