
MONASH
INFORMATION
TECHNOLOGY

Towards self-securing software systems

Professor John Grundy
Dr Mohamed Abdelrazek – Deakin
Dr Amani Ibrahim - Deakin
Mostafa Farshchi

2

Outline

§ Motivating example
§ Some (partial) solutions we have been working on:

– Static vulnerability analysis
– Log / metric correlation analysis (dynamic analysis)
– Run-time cloud monitoring via generated probes (static & dynamic)
– Mitigation via run-time software update (models @ run-time approach)

§ Future directions…

3

Motivation

3

Cloud Providers: GREEN CLOUD – BLUE CLOUD
Service Providers: SWINSOFT - GREEN CLOUD – BLUE CLOUD
Cloud Consumers: Swinburne University- Auckland University, SwinMarket

Get Currency-
Now

Build Workflow

Galactic ERP

Execute Batch
processing

<<
in

clu
de

>>
<<include>>

<<
in

clu
de

>>
SWIN
SOFT

SWIN
SOFT

GREEN
CLOUD

BLUE CLOUD

Injection attack
e.g. SQL, JS

Poor Isolation

Excessive
Priviledges

Data tampering attack

Root-kit attack

4

“Self-securing” Software Systems

§ Some key challenges:
– When engineer cloud applications, don’t know what other apps be deployed

with, hardware deployed on, networks etc
– Stakeholder requirements change esp multi-tenant cloud apps
– New threats continually emerging
– Design-time fixing / re-deploying too slow, leaves system vulnerable

§ Idea is to have the software itself:
– Identify emergent threats - even as its environment changes
– Identify mitigations to the threats
– Self-adapt the application(s) while in use to counter the threat

5

Technique #1 – Vulnerability analysis

§ Part of larger “model-driven security engineering @ run-time”
(MDSE@R) platform (another talk for another day… J)

§ Formalise the OWSAP and CAPEC database of security
vulnerabilities into “signatures” ; search for these in code/models

§ Handles code vulnerability detection and design, architecture
vulnerability detection & security “metrics”

§ Some vulnerabilities have a “mitigation” – some can apply at run-time
using MDSE@R platform (run-time security enforcement) and/or our
”Re-aspects” framework (run-time .NET code updating)

6

Examples…

if(Request.Cookies["Loggedin"] != true) {
 if(!AuthenticateUser(Request.Params["username"],
 Request.Params["password"]))
 throw new Exception("Invalid user");

}
DoAdministrativeTask();

Figure 3. A code snippet vulnerable to authentication Bypass

	
if(!AuthenticateUser(Request.Params["username"],

 Request.Params["password"]))
 throw new Exception("Invalid user");

updateCustomerBalance(Request.QueryString["custID"], nBalance);
Figure 4. A code snippet vulnerable to improper authz

	

Public bool LogUser(string username, string password) {
 string query = “SELECT username FROM Users WHERE
 UserID =‘” username “ ‘ AND Password = ‘” + password + “’”;

Figure 2. A code snippet vulnerable to SQLI attack

	

7

Formal vulnerability signatures

Vul. Vulnerability Signature (Simplified!!)
SQLI Method.Contains(S : MethodCall | S.FnName = “ExecuteQuery” AND

S.Arguments.Contains(X : IdentifierExpression | X.Contains(InputSource)))
XSS Method.Contains(S : AssignmentStatement | S.RightPart.Contains(InputSource)

AND
S.LeftPart.Contains(OutputTarget))

Improper Authn. Method.IsPublic == true AND Method.Contains(S : MethodCall |
S.IsAuthenitcationFn == true AND S.Parent == IFElseStmt AND
S.Parent.Condition.Contains(InputSource))

Improper Authz. Method.IsPublic == true AND Method.Contains(S : Expression | S.Contains(X:
InputSource | X.IsSanitized == False OR X.IsAuthorized == False)

8

SMART (Static) Analyser

Pr
og

ra
m

 S
ou

rc
e

co
de

Program
Representation 1

Abstract Syntax
Tree

Program
Representation n

…

…
Signature Locator

OCL
Functions

Platform
Profile

Vulnerability List

Weaknesses
Signatures

(OCL)

9

Technique #2 – log file/cloud PaaS metric analysis (dynamic analysis)

§ Applied to large scale cloud operations e.g. rolling upgrade
§ These complex operations often fall over due to various issues

encountered during the operation
§ Detecting – and fixing is (very) hard
§ Our approach – take log file & monitor cloud metrics – do correlation

analysis to determine occurrence of cloud operation exceptions
§ Aim to generate assertions / monitors to determine proactively

different cloud operation exceptions
§ Lots of challenges – detail in logs; log collection timings; access to

detailed cloud metrics; metric capture frequency and accuracy; …

10

Anomaly detection

11

Process…

12

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

0.900

1.000

0mTW 1mTW 2mTW 1mTW_RipEff 2mTW_RipEff

F-score

TerminatedInstance CPUAverage CPUMaximum

Correlation analysis

13

Technique #3 – monitoring probe generation

§ How do we better monitor run-time metrics?
§ Specify metrics and security constraints of interest – similar to

vulnerability signatures
§ Process application model to determine where to monitor
§ Inject “probes” at run-time to monitor (using variety of techniques)
§ Capture data, metrics
§ Determine exceptions, mitigations
§ Action mitigations…

14

Metric Signature

Information Disclosure

context Method inv InfoDisclosure:
Let access : Request := self.Requests->last() in
Let authorized : Response :=

self.AuthorizationControl.Responses-> select(R| R.IsValid = True AND access.UserID = R.UserID)->last() in IF
(authorized) THEN true ENDIF

Chinese Wall

Let Subject := Classes->select(Name = 'Subj')->first() in
Let Obj: Class := Classes->select(Name = 'Object')->first()
Let mthdCall : Request := self.Requests->last() in
Let mthdReturn: Response := self.Responses->last() in
Let access : Request := self.Requests->last() in
IF (access.RequestTime > mthdCall.RequestTime and

access.RequestTime < mthdReturn.ResponseTime) THEN Not self.Conflictlist->exists(R| R = access.Target)

Restrict System Calls
Let SystemCalls : Request := Classes->select(Name = ‘SystemHandler’)->first().Requests()->last() in

IF (SystemCalls <> null) THEN false ENDIF

Separation of Duties

Let xReq : Request:= Requests(Entity = 'MthdX') in
Let yReq : Request:= >Requests(Entity = 'MthdY') in
Let zReq : Request:= >Requests(Entity = 'MthdZ') in
IF (xReq.UserID = yReq.UserID and xReq.Target = yReq.Target Or xReq.UserID = zReq.UserID and zReq.Target = zReq.Target

Or yReq.UserID = zReq.UserID and xReq.Target = yReq.Target) THEN false ENDIF

Authenticated Requests
context System inv AuthenticatedRequests:
self.AuthenticationControl.Requests->select()->count()/ self.Request->select()->count()

Authentic Requests
context System inv AuthenticRequests:
self.AuthenticationControl.Response->select(R | R.IsValid = true)->count()/ self.AuthenticationControl.Request->select()-

>count()

Last(10) Authz. Reqs
context System inv Last10AuthzCtl:
self.AuthorizationControl.Requests->select()->Last(10)

Top(10) admin Requests
context System inv Top10AuthnCtl:

self.AuthenticationControl.Responses->select(R | R.UserID = ‘Admin’)->count()

Mean Time Between
Unauthentic Request

context System inv MTBUnauthenticRequests:
self.AuthenticationControl.Responses->select(R | R.IsValid = false)>differences(‘Measurementtime’)-> sum() /

self.AuthenticationControl.Responses->select(R | R.IsValid = false))->count()
Authenticated Requests

Trend
context System inv Authenticated RequestsTrend:
self.AuthenticatedRequests.Differences(‘AuthenticatedRequests’)->sum() / self.AuthenticatedRequests-> count()

MTBUR Over Systems context System inv MTBUROverSystems:
self.MTBUnauthenticRequests->sum()/ self.MTBUnauthenticRequests->count()

Example signatures of security metrics/properties in OCL

15

….Service 1 Service 2 Service n

M
et

ric
 Sp

ec
ifi

ca
tio

n

Probe Manager

Probe Generator

System Wrapper

Measures Analysis Re
po

rti
ng

 se
rv

ice

M
et

ric
s’

De
fin

iti
on

s
an

d
M

ea
su

re
m

en
ts

Probe Probe ProbeProbe

Process

16

Results

17

Technique #4 – run-time mitigation

§ Found vulnerability (statically or dynamically, at design-time or run-
time) ; found anomaly – how fix / mitigate / raise alarm??

§ Use one (or more) of previous techniques to identify security flaw /
vulnerability / new attack scenario / anomalous measurement(s) /
event(s) at run-time

§ Identify feasible modification to application to address
§ Update the application on-the-fly to address vulnerability / security

flaw / counter attack scenario / mitigate for anomaly
§ Validate that vulnerability etc has been addressed
§ The beginnings of the notion of “self-securing software systems”…

18

SMART Tool – code updater

Re-aspect Engine
Change Propagator

Impact Analyser

Re-aspect Locator

AST Generator

Target Code Base

Source Code Base

Re
-a

sp
ec

t
M

od
el

le
r

Pe
rs

pe
ct

ive
 M

od
el

le
r1

4

5

6

3 2

1 2

3 4

5

Target code in
VB.Net Anti-aspect in C#

19

Fix ups of vulnerable code

if(Request.Cookies["Loggedin"]	!=	true)	{	
							if(!AuthenticateUser(Request.Params["username"],	

Request.Params["password"]));	
				throw	new	Exception("Invalid	user");	

}	
DoAdministration();

Figure 3: Case 2: code vulnerable to authentication bypass, to replace

if(!AuthenticateUser(Request.Params["username"],		
																																										Request.Params["password"]))	

throw	new	Exception("Invalid	user");	
if(!AuthorizeUser(Thread.CurrentPrincipal,	
																				(new	StakeFrame()).GetMethod().Name,		
																				(new	StakeFrame()).GetMethod().GetParameters()))			
									throw	new	Exception("User	is	not	auhorized");	
updateCustomerBalance(Request.QueryString["cID"],	nBalance);	

Figure 6: Case 4: code vulnerable to improper authorization, to inject

bool	updateCustomerBalance(string	custID,	decimal	nBalance)	{	
if(!AuthenitcateUser(username,	password))	return	false;	
if(!AuthorzUser(username,	"updateCustBalance"))	return	false;	
LogTrx(username,	dateTime.Now,	"updateCustomerBalance");	
Customer	customer	=	Customers.getCustomerByID(custID);	
customer.Balance	=	nBalance;	
Customers.SaveChanges();	
LogTrx(username,	dateTime.Now,	"updateCustBalance	done");	

}
Figure 2: Case 1: code with old security functions, we want to leave out

Inputsanitizer((new	StakeFrame()).GetMethod().GetParameters());	
string	query	=	"SELECT	*		FROM	USERS	WHERE	UserID	=	'"		
+	EncodeForSQL(username)		+	"'	AND	password	=	'"		
+	EncodeForSQL(password)		+	"'";	
Figure 5: Case 3b: Code vulnerable to SQL injection, to modify

20

Run-time mitigation architecture via reconfiguration

21

All is not as it may seem…

§ Can compare systems in the same domain – but appearances can be (very)
deceiving…

§ Vulnerability Counts vs Metrics vs meaning
– need to compare like with like
– Criticality of the issue vs simple occurrences
– System scale makes a large difference

§ Just one critical weakness can cause whole system to be compromised under
attack; lots of minor weaknesses may be tolerable

§ Its rather slow to analyse many of these => non-real time
§ Change to environment / co-deployed services/applications => changes to measures

/ counts…
§ Run-time vulnerability analysis still emerging area

22

Current / future work

§ Further formalisation of the OWSAP and CAPEC databases of security

vulnerabilities (IMO one of the real contributions we have undersold…)

§ Apply deep learning to static, dynamic vulnerability detection vs rule-

based (DIGGER, SMART) and statistical-based (log analysis)

approaches – have a group of leading experts @ Deakin on this J

§ Implies have good training set - but…

§ Implies have good vector model for input to the RNN-based learnerc-

but...

§ Supporting tenants to specify their security requirements is... Really hard!

§ Zero-day threat detection at IaaS level extremely hard – but working on

how to apply to IoT security analysis and mitigation

23

Questions…

24

References

§ Almorsy, M., Grundy, J.C., Ibrahim, A., Adaptive Software Security, Chapter 5 in Managing trade-offs in adaptable software architectures, I.
Mistrik, J. Grundy, B. Schmerl, R. Kazman, N. Ali (Eds), Morgan Kaufmann, January 2016.

§ Almorsy, M., Grundy, J.C. and Ibrahim, A. Improving Tenants’ Trust In SaaS Applications Using Dynamic Security Monitors, In 2015
International Conference on Engineering Complex Computing Systems (ICECCS 2015), Gold Coast, Australia, 9-12 December, IEEE

§ Almorsy, M., Grundy, J.C., Ibrahim, A., Adaptable, Model-driven Security Engineering for SaaS Cloud-based Applications, Automated
Software Engineering, vol. 21, no. 2, April 2014, Springer.

§ Almorsy, M., Grundy, J.C. and Ibrahim, A., Automated Software Architecture Security Risk Analysis Using Formalized Signatures, 2013
IEEE/ACM International Conference on Software Engineering (ICSE 2013), San Franciso, May 2013, IEEE CS Press

§ Almorsy, M., Grundy, J.C. and Ibrahim, A. Supporting Automated Vulnerability Analysis using Formalized Vulnerability Signatures, 27th
IEEE/ACM International Conference on Automated Software Engineering (ASE 2012), Sept 3-7 2012, Essen, Germany, ACM Press.

§ Almorsy, M., Grundy, J.C. and Ibrahim, A., Supporting Automated Software Re-Engineering Using "Re-Aspects”, 27th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2012), Sept 3-7 2012, Essen, Germany, ACM Press.

§ Ibrahim, A., Hamlyn-Harris, J., Grundy, J.C., Almorsy, M., Operating System Kernel Data Disambiguation to Support Security Analysis, 2012
International Conference on Network and System Security (NSS 2012), Fujian, China, Nov 21-23 2012, LNCS, Springer.

§ Almorsy, M., Grundy, J.C. and Imbrahim, A. Collaboration-Based Cloud Computing Security Management Framework, In Proceedings of
2011 IEEE International Conference on Cloud Computing (CLOUD 2011), Washington DC, USA on 4 July – 9 July, 2011, IEEE.

§ Imbrahim, A., Hamlyn-Harris J., Grundy, J.C. and Almorsy, M., CloudSec: A Security Monitoring Appliance for Virtual Machines in the IaaS
Cloud Model, In Proceedings of the 5th International Conference on Network and System Security (NSS 2011), Milan, Italy, September 5-7
2011, IEEE Press.

§ Almorsy, M., Grundy, J.C. and Ibrahim, I., VAM-aaS: Online Cloud Services Security Vulnerability Analysis and Mitigation-as-a-Service,
2012 International Conference on Web Information Systems Engineering (WISE 2012), Nov 28-30 2012, Paphos, Cyprus, LNCS, Springer.

§ Ibrahim, A., Hamlyn-Harris, J., Grundy, J.C. and Almorsy, M., DIGGER: Identifying OS Kernel Objects for Run-time Security Analysis,
International Journal on Internet and Distributed Computing Systems, vol 3, no. 1, January 2013, pp 184-194.

§ Almorsy, M. and Grundy, J.C. SecDSVL: A Domain-Specific Visual Language To Support Enterprise Security Modelling, 2014 Australasian
Conference on Software Engineering (ASWEC 2014), Sydney, Australia, April 2014, IEEE CS Press.

§ Almorsy, M., Grundy, J.C., Ibrahim, A., SMURF: Supporting Multi-tenancy Using Re-Aspects Framework, 17th IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS 2012), Paris, France, July 2012, IEEE CS Press.

