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Executive summary 

Extensive research has demonstrated that Earth’s biodiversity has been affected by climate change in the 
previous decades, and various modelling techniques have been used to assess ecological changes that are 
likely in the future as climate change continues. But there have been few climate change impact 
assessments at large scales (national or continental). This report describes and illustrates a method for 
assessing broad ecological impacts of future climate change for the vegetation of all of Australia. The report 
focuses on a methodology but also presents preliminary results that can inform conservation policy, 
planning and management for very large areas. 

For all of Australia, we classified ecological environments using artificial neural networks (ANN) at two 
broad scales: seven terrestrial ecoregions (global biomes) and 23 major vegetation groups (MVGs). These 
classifications were then used to analyse likely climate change impacts in a variety of ways. The 
environmental variables included many bioclimatic indices, three soil variables and nine topographic 
variables. Two climate change scenarios were considered for 2070 using CSIRO’s Mk3.5 GCM (a medium 
impact scenario, using the A1B emissions scenario; and a high impact scenario, using the A1FI emissions 
scenario). 

Outputs of the ANN classification consist of a suitability of each location for each of the ecological classes 
based on the environmental inputs. The training process seeks to calibrate the functions linking the 
environmental inputs and the suitability scores for the ecological classes to get the best match between the 
predicted ecological class and the mapped ecological class. 

The ANN classifiers can assess possible climate change impacts using a variety of techniques. The simplest 
approach is to apply the ANNs to an altered set of input patterns that represent a future climate, then map 
the reclassified new environments. By comparing these new classified maps with the original unclassified 
map we calculate the transition matrixes that show the areas that become more favourable to some other 
class or remain favourable to the class that is mapped now. 

Classification of the seven ecoregions is highly accurate: 96.8% producer accuracy with a Kappa value of 
0.95. Classification of the 23 MVGs is less accurate: 64.2% producer accuracy with a Kappa value of 0.61. 
While the accuracy is not high, the expected accuracy of a random model is only 2.3%. 

The ANN classifiers provide much more information than is apparent in a classification per se, where the 
output node with the largest value is chosen as a pattern’s (location’s) classification. By using the values of 
all the output nodes we calculated the dissimilarity of this vector to the ‘ideal’ vector with the value of 1.0 
for the class that is mapped at that location and all other values of 0.0. 

We also calculated a measure of environmental change that uses the Bray–Curtis dissimilarity measure at 
all map locations. This is a pairwise distance measure between the ANN classification output in the baseline 
climate and the classification output in the A1B and A1FI climate scenarios, using all 23 outputs from the 
model that represent environmental suitability for each of the 23 vegetation types. 

The results are complex in detail, but broadly: 

1. The method appears to be useful for broad, continental analyses 

2. Climate change will alter the spatial distribution and extent of the environments of Australia’s biomes 
to some degree and have major impacts on the extent and distribution of environments suitable to the 
major vegetation groups with a trend toward less wooded and more open vegetation. Much of the 
continent’s vegetation as it exists now will be in large disequilibrium with climate in the future with 
many locations having climates unlike what occurs now anywhere in Australia. This implies that climate 
change will stress existing ecosystems considerably and result in rapid change in the condition and 
character of vegetation throughout Australia. 
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1 Introduction 

This report describes and illustrates a method for assessing broadscale ecological impacts of future climate 
change for all of Australia. The discussion focuses on the method and does not draw conclusions 
concerning the ecological or policy implications of the results.  

Extensive global research has demonstrated that Earth’s biodiversity has been affected by climate change 
in the previous decades (Parry et al. 2007), and various modelling techniques have been used to assess 
ecological changes that are likely in the future as climate change continues. Most of the projections of 
climate change impacts on biodiversity in the future are based on and extrapolated from habitat models of 
individual species (e.g. Thomas et al. 2004). While this approach may be able to answer questions about the 
risk of species extinction when good distribution data are available, it is inevitably limited by the paucity of 
distribution data for most species and cannot be used to infer changes in broader biodiversity patterns such 
as biomes and ecosystem structure. While conservation policy, planning and management are frequently 
concerned with preservation of individual iconic species, their goals are often much broader and more at 
landscape and ecosystem scales. Policy is often at national or continental scales. There have been few 
climate change impact assessments at these larger scales (regional, national or continental). Here we 
present an approach and preliminary results that can inform conservation policy, planning and 
management for very large areas such as Australia as a whole.  

At large scales vegetation is thought to be in dynamic equilibrium with climate (Prentice 1986; Webb 1986), 
and the distribution of biomes is controlled by ecophysiological constraints related mainly to temperature 
and water availability (Schulze 1982; Woodward 1987). So our approach uses maps of vegetation classes at 
various scales along with detailed spatial estimates of climate, topographic and edaphic variables to 
objectively classify environments that are characteristic of these vegetation classes. The goal is to 
transform a high dimensional, physical environment space (many climate variables and, in the case of the 
major vegetation groups, a number of terrain and soil variables as well) into a lower dimension, ecologically 
meaningful, biotically scaled space. This is accomplished through supervised classification using artificial 
neural networks (ANNs; Rumelhart and McClelland 1986). Then, given any spatial scenario of change in the 
climate we can map these ecological environments in geographic space. Most importantly, we can compare 
this new spatial map of environments with what it looks like today and also with the spatial distribution and 
extent of the actual ecological classes. In this way, we can quantify how climate may stress existing 
ecosystems, predict how the extent and distribution of ecologically meaningful environmental classes may 
change in the future and infer how climate change may affect vegetation classes and, consequently, 
biodiversity and ecosystem function.  

Like the modelling of species habitat (e.g. Elith and Graham 2006) our approach classifies environments in 
relation to their suitability for biological classes, and we can map potential ‘habitat’ for these classes given 
any future or past climatic scenario. But unlike habitat modelling of species, our classes are more 
conceptual and often display much more inertia in response to climate change. Consequently, we 
developed quantitative indexes, based on the classification of environments, that spatially identify the 
degree of stress that existing classes may experience and where significant ecological change is most or 
least likely to occur. We also identify areas that will have novel environments in the future. 

This methodology builds on the successes of a similar approach that was used in the Wet Tropics Ecoregion 
of north-east Queensland where an ANN was used to classify 15 structural/physiognomic forest 
environments based on a range of climatic, edaphic and topographic variables. This research demonstrated 
that the environments of mapped vegetation classes can be classified very well using ANNs (Hilbert and Van 
Den Muyzenburg 1999), that further analyses of the model can provide useful ecological insights (Hilbert 
and Ostendorf 2001; Ostendorf et al. 2001) and that the impacts of past (Hilbert et al. 2007) and future 
climate change (Hilbert et al. 2001) can be assessed in ways that are useful for informing policy and 
planning as well as providing ecological and biogeographic insights. 
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2 Methods 

We used ANNs for the supervised classification of environments based on mapped vegetation classes. 
ANNs are well known to be very good at a wide variety of classification problems. In our application ANN 
modelling was used to transform multiple environmental parameters into relative suitability for multiple 
ecological classes; these parameters were then used to predict an environmental class for each point and 
various change metrics. Among their advantages, ANNs make no assumptions as statistical approaches 
must do. Historically, it was difficult to understand them analytically – that is, what variables are most 
important in a classification? – but recent advancements allow more insight, and some software includes 
ranking of variables’ importance. 

For all of Australia, we classified environments at two broad scales: seven terrestrial ecoregions (global 
biomes) and 23 major vegetation groups (MVGs). These classifications were then used to analyse likely 
climate change impacts in a variety of ways for all of the continent and for the four biomes as defined in 
this project: 1) northern savannah grasslands – wet and dry tropics, includes grassy savannah woodlands; 2) 
south-eastern Australian sclerophyll forests – wet and dry sclerophyll forests; 3) hummock grasslands of 
central Australia – acacia and eucalypt hummock grasslands; and 4) temperate lowland grassy ecosystems – 
tussock grasslands, grassy woodlands. Here, we present the full continental maps and data. 

2.1 Vegetation data 

2.1.1 TERRESTRIAL ECOREGIONS 

The ecoregions are derived from Thackway and Cresswell’s (1995) biogeographic regionalisation for 
Australia. These were incorporated into a global map of terrestrial ecoregions (Olson et al. 2001) from 
which the spatial data were obtained. The spatial resolution of these data is 1 km2 over the entire 
continent. The classes include seven ecoregions that are mapped in Figure 1 and listed in Table 1. We have 
retained the numbering system used in the global map.  

2.1.2 MAJOR VEGETATION GROUPS  

The data consist of a digital map of the pre-clearing distributions of 23 MVGs at a one hectare resolution for 
the entire continent (Thackway et al. 2007). The MVGs are displayed in Figure 2 and listed in Table 2. Their 
correspondence with biomes, as defined in this project, is presented in Table 3. 
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Figure 1 Map of Australian ecoregions (remapped using data from NVIS) 

Table 1 List of Australian ecoregions and their area (km2) as mapped 

 ECOREGION AREA 
1 Tropical and Subtropical Moist Broad Leaf Forests 27 672 

4 Temperate Broadleaf and Mixed Forest 548 744 

7 Tropical and Subtropical Grasslands, Savannas and Shrublands 1 810 712 

8 Temperate Grasslands, Savannas and Shrublands 539 788 

10 Montane Grasslands and Shrublands 11 800 

12 Mediterranean Forests, Woodlands and Scrub 761 072 

13 Deserts and Xeric Shrublands 3 158 488 
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Figure 2 Map of Australian major vegetation groups (remapped using data supplied by NVIS)  

Table 2 The major vegetation groups of Australia used in this analysis 

NUMBER MAJOR VEGETATION GROUP 

1 Rainforests and vine thickets  
2 Eucalypt tall open forests  
3 Eucalypt open forests  
4 Eucalypt low open forests  
5 Eucalypt woodlands  
6 Acacia forests and woodlands  
7 Callitris forests and woodlands  
8 Casuarina forests and woodlands  
9 Melaleuca forests and woodlands  

10 Other forests and woodlands  
11 Eucalypt open woodlands 
12 Tropical eucalypt woodlands/grasslands  
13 Acacia open woodlands  
14 Mallee woodlands and shrublands  
15 Low closed forests and tall closed shrublands  
16 Acacia shrublands  
17 Other shrublands  
18 Heathlands  
19 Tussock grasslands  
20 Hummock grasslands  
21 Other grasslands, herblands, sedgelands and rushlands  
22 Chenopod shrublands, samphire shrublands and forblands  
23 Mangroves  
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Table 3 Correspondence between the four biomes, as defined in this project, and the major vegetation groups 

BIOME MAJOR COMPONENTS MINOR COMPONENTS 
Northern savannah 
grasslands 

MVG 5 Eucalypt woodlands MVG 19 Tussock grasslands 

MVG 12 Tropical eucalypt/woodlands/grasslands MVG 9 Melaleuca forests and woodlands 

MVG 11 Eucalypt open woodlands MVG 1 Rainforests and vine thickets 

MVG 3 Eucalypt open forest MVG 6 Acacia forests and woodlands 

MVG 6 Other forests and woodlands  

Hummock grasslands of 
central Australia 

MVG 20 Hummock grasslands MVG 5 Eucalyptus woodlands 

MVG 16 Acacia shrublands MVG 6 Acacia forests and woodlands 

MVG 13 Acacia open woodlands MVG 17 Other shrublands 

MVG 8 Casuarina forests and woodlands  

MVG 14 Mallee woodlands and shrubs  

Temperate lowland grassy 
ecosystems 

MVG 19 Tussock grasslands MVG 11 Eucalypt open woodlands 

Subgroup ‘eucalypt woodlands with a grassy 
understorey’ of MVG 5 MVG 21 Other grasslands 

Sout-eastern Australian 
sclerophyll forests 

MVG 1 Rainforest and vine thicket MVG 5  

MVG 2 Eucalypt tall open forests  excluding the subgroup ‘eucalypt woodlands 
with a grassy understorey'’ 

MVG 3 Eucalypt open forests  
MVG 4 Eucalypt low open forests  

 

Note that it is difficult to precisely delineate the ‘ecoregions’ with the MVGs. For example, Eucalyptus 
woodlands (MVG 5) appear to be particularly problematic since all ‘biomes’ contain at least some of this 
class. And, as will be described later, Eucalyptus woodland environments are not well distinguished from 
other MVGs.  

2.2 Environmental data 

2.2.1 CURRENT ENVIRONMENTS 

All the environmental variables used in the analyses are listed in Table 4, including 23 bioclimatic variables 
(Houlder et al. 2000), three soil variables and nine topographic variables. Thirty-five bioclimatic variables 
were available but we found that some of these display serious artefacts at continental scales, especially in 
the climate change scenarios, so they were not used in the multi-output classification. All the data 
consisted of grids at a 1 km2 resolution for the entire continent.  
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Table 4 List of the environmental variables used in the multi-output classifications 

CODE NAME DESCRIPTION 
BIOCLIMATIC VARIABLES 

BioClim1  Annual Mean Temperature mean of all the weekly mean temperatures where each weekly mean temperature is the mean of 
that week’s maximum and minimum temperature 

BioClim2  Mean Diurnal Range mean of all the weekly diurnal temperature ranges where each weekly diurnal range is the 
difference between that week's maximum and minimum temperature 

BioClim3  Isothermality  mean diurnal range (BioClim2) divided by the Annual Temperature Range (BioClim7)  
BioClim4 Temperature Seasonality  the temperature coefficient of variation, the standard deviation of the weekly mean temperatures 

expressed as a percentage of the mean of those temperatures (i.e. the annual mean). For this 
calculation, the mean in degrees Kelvin is used to avoid the possibility of division by zero 

BioClim5 Max Temperature of Warmest 
Period 

the highest temperature of any weekly maximum temperature 

BioClim6 Min Temperature of Coldest 
Period 

the lowest temperature of any weekly minimum temperature 

BioClim7 Temperature Annual Range  the difference between the Max Temperature of Warmest Period and the Min Temperature of 
Coldest Period 

BioClim10 Mean Temperature of Warmest 
Quarter 

The warmest quarter of the year is determined (to the nearest week), and the mean temperature of 
this period is calculated 

BioClim11 Mean Temperature of Driest 
Quarter 

The driest quarter of the year is determined (to the nearest week), and the mean temperature of 
this period is calculated  

BioClim12 Annual Precipitation The sum of all the monthly precipitation estimates 
BioClim13 Precipitation of Wettest Period The precipitation of the wettest week  
BioClim14 Precipitation of Driest Period The precipitation of the driest week  
BioClim16 Precipitation of Wettest Quarter The wettest quarter of the year is determined (to the nearest week), and the total precipitation over 

this period is calculated  
BioClim20 Annual Mean Radiation The mean of all the weekly radiation estimates 
BioClim22 Lowest Period Radiation The lowest radiation estimate for all weeks  
BioClim23 Radiation Seasonality  The Coefficient of Variation (C of V) is the standard deviation of the weekly radiation estimates 

expressed as a percentage of the mean of those estimates (i.e. the annual mean) 
BioClim28 Annual Mean Moisture Index The mean of all the weekly moisture index values 
BioClim29 Highest Period Moisture Index The maximum moisture index value for all weeks  
BioClim30 Lowest Period Moisture Index The minimum moisture index value for all weeks 
BioClim31 Moisture Index Seasonality  The Coefficient of Variation (Cv) is the standard deviation of the weekly moisture index values 

expressed as a percentage of the mean of those values (i.e. the annual mean) 
BioClim32 Mean Moisture Index of Highest 

Quarter MI 
The quarter of the year having the highest moisture index value is determined (to the nearest week), 
and the average moisture index value is calculated 

BioClim33 Mean Moisture Index of Lowest 
Quarter MI 

The quarter of the year having the lowest moisture index value is determined (to the nearest week), 
and the average moisture index value is calculated  

BioClim35 Mean Moisture Index of Coldest 
Quarter 

The coldest quarter of the year is determined (to the nearest week), and the average moisture index 
value is calculated 

TERRAIN VARIABLES 

 SLOPE Mean of the 9 second slope values in each 36 second grid cell (%) 
 RELIEF Range of the 9 second DEM elevation values in each 36 second grid cell (m) 
 ROUGHNESS  Cv of the 9 second DEM elevation values in each 36 second grid cell (m) Computed mean elevation 

values greater than -1 and less than +1 were set to a value of 1 to calculate the Cv (%) 
 TWI  Maximum of the Topographic Wetness Index (TWI) values in each 36 second grid cell. TWI was 

calculated as ln(a/tan ß) where a is the upslope area per unit contour length and tan ß is the local 
slope (dimensionless) 

 MRVBF  Median value of the multi-resolution Valley Bottom Flatness index values (mrVBF) in each 36 second 
grid cell (dimensionless) 

 MRRTF Median value of the multi-resolution Ridgetop Flatness index values (mrRTF) in each 36 second grid 
cell (dimensionless) 

 VALLEYBOTTOM  Proportion of the 9 second grid cells classed as valley bottoms according to the values of mrVBF and 
mrRTF (i.e. mrRF – mrRTF >2) (%) 

 RIDGETOPFLAT  Proportion of the 9 second grid cells classed as ridgetop flats according to the values of mrVBF and 
mrRTF (i.e. mrRTF – mrVBF >2) (%) 

 EROSIONAL  Proportion of the 9 second grid cells classed as valley bottoms according to the values of mrVBF and 
mrRTF (i.e. mrVBF & mrRTF both < 2.5) (%) 

SOIL ATTRIBUTES 

 SOILDEPTH  The weighted average of the solum depth values (m) 
 SOLPAWHC  The weighted average of the solum plant available water holding capacity (PAWHC) (mm) 
 A_KSAT  The weighted average of median A horizon saturated hydraulic conductivity (mm/h) 
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2.2.2 FUTURE ENVIRONMENTS 

Two scenarios were considered for 2070 using the CSIRO Mk3.5 GCM (Gordon et al. 2002): a medium 
impact scenario, using the A1B emissions scenario; and a high impact scenario using the A1FI emissions 
scenario (IPCC 2000).  

Monthly climate grids from the GCM at 0.25° resolution for maximum temperature, minimum temperature, 
rainfall and evaporation were downscaled using the ANUCLIM software (Houlder et al. 2000), that produces 
grids of 35 bioclimatic parameters (BioClim variables; Busby 1986). The beta release of ANUCLIM version 
6.0 was used, which allows climate change grids to be applied over the historical 1990-centred climate 
surfaces. New software (Harwood and Williams 2009) was written to interpolate the raw 0.25° CSIRO grids 
to cover the whole Australian land mass, and relate evaporation change to the date range used in ANUCLIM 
6.0. Following this interpolation, monthly maximum temperature, minimum temperature, rainfall, and 
evaporation change grids were input to ANUCLIM 6.0 with a 0.01° digital elevation model, resulting in the 
1 km2 resolution future climate surfaces of 35 BioClim variables for each scenario (see Harwood et al. 2012 
for more detail). 

2.3 Classification 

2.3.1 GENERAL ISSUES 

In any supervised classification problem there are a number of possible sources of confusion that 
collectively contribute to classification ‘error’ or the inability of a method to distinguish classes (Hilbert and 
Van Den Muyzenberg 1999). By ‘confusion’ we mean the inability to perfectly distinguish classes with the 
available data. These include ‘intrinsic confusion’ when the classes are not well-defined for the problem or 
are in boundary areas where there is real overlap in environments for adjacent classes, measurement 
errors in class identification and/or the associated independent variables, and estimation errors due to 
limitations in the classification method. To our knowledge there are no quantitative methods that can 
distinguish these sources of confusion, but it is worthwhile to consider these issues when interpreting the 
environmental classifications that we present here.  

In the context of this research, intrinsic confusion occurs to the degree that mapped vegetation classes 
(ecoregions or MVGs) are not well correlated with environmental variables or, in the case of transition 
zones, between classes. The latter is expected and inevitable, since vegetation responds more continuously 
to environmental gradients than its categorical representation in maps. Measurement errors are certainly 
present in the class maps (e.g. obvious artefacts in the NVIS MVG map) and are no doubt present in maps 
of the baseline climate and other environmental variables. Unfortunately, these errors are typically not 
quantified by the data providers or reported. Estimation errors, that is, classification errors due to 
limitations of the method are, unfortunately, impossible to separate from the other sources of confusion, 
since these have not been quantified. 

2.3.2 RE-SAMPLING THE SPATIAL DATA TO A COMMON SCALE 

The available data over the entire continent differed in resolution from one hectare (MVGs) to 1 km2 for all 
the other data. The fine-grained mapping of the MVGs could not possibly be classified at this resolution 
from 1 km2 resolution environmental data. Also, the accuracy of the pre-settlement MVG map is unknown. 
Consequently, we considered a range of re-sampling of the data that was equal to or larger than the 1 km2 
resolution of the environmental data, recognising that the spatial accuracy of the latter is not known and 
probably much less than 1 km2. In an ad hoc fashion, we determined that a 4 km2 re-sampling of the MVG 
data preserved a reasonable amount of detail that we believed could be classified using our methods. 
Consequently, we re-sampled all the spatial data at a 4 km2 resolution in ArcMap (Esri Australia n.d.) using 
a majority rule for the ecoregion and MVG data and the mean for the environmental data. This produced 
slightly more generalised data for use in the classifications.  
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2.3.3 CLASSIFICATION OF ENVIRONMENTS 

We used FANN (Fast Artificial Neural Network Library) to classify environments of both the ecoregions and 
the MVGs. This software is a free, open source neural network library (available from 
http://leenissen.dk/fann/) that implements multilayer ANNs in C with support for both fully connected and 
sparsely connected networks. It provides a number of options, including the network structure, the training 
algorithm, and the ability to choose training parameters for the specified algorithm. We experimented with 
a wide range of structures, training algorithms and parameters to find a combination of these choices that 
provided the best classification accuracy. For both ecoregions and the MVGs we chose a neural network 
structure with a single hidden layer with 150 nodes trained with the standard, classic training method. In 
both cases the learning rate was set at 0.05 and momentum at 0.0. Both networks use the standard logistic 
transformation for the hidden and output nodes, with the steepness parameter set at 0.5.  

In machine learning parlance a vector (list) of inputs and an associated output vector is called a pattern. In 
our case a pattern corresponds to a 4 km2 geographic location where the environmental variables are 
known as the vegetation class. These patterns are used to either train the neural network or to validate 
(test) the generality of the classification. The validation or test set of patterns is used to determine the best 
classification that is not overtrained, that is, is as accurate as possible in classifying patterns that were not 
used in the training.  

Outputs of the ANN classification consist of a suitability of each location for each of the ecological classes 
based on the environmental inputs. The predicted environmental class was defined as the class with the 
highest suitability score. The training process seeks to calibrate the functions linking the environmental 
inputs and the suitability scores for the ecological classes to get the best match between the predicted 
ecological class and the mapped ecological class.  

2.3.4 TRAINING AND VALIDATION DATA 

Training and validation data were sampled in an ad hoc way from the re-sampled (4 km2) ecoregions or 
MVGs and the environmental data in order to achieve a reasonable classification of both rare and abundant 
vegetation types and to balance producer and consumer accuracies. Since total class areas vary by from 
two to three orders of magnitude, we included a large proportion of the rare classes and a very small 
proportion of the most common classes. The sample sizes are provided in Appendix A, Table 1 (ecoregions) 
and Appendix A, Table 2 (MVGs). The samples were then split randomly into independent training (80%) 
and test sets (20%).  

2.4 Ranking the importance of variables in the classification of 
vegetation’s environments  

Here, we trained individual models for each of the ecoregions and each of the NVIS MVGs using the 
Tiberius software (Brierley unpublished), which ranks variable importance using the Gini Coefficient 
(Breiman et al. 1984). The Gini coefficient is directly related to the area under the receiver operator 
characteristic curve (Hand and Till 2001) that is the standard for assessing the success of classification 
algorithms.  

Classification of the seven ecoregions used the 35 BioClim variables (35 input nodes) in the baseline climate 
presented in Table 5. Classification of the 23 MVGs used all the variables in Table 5 and all the terrain and 
soil variables in Table 4 (47 input nodes). For both the ecoregions and the MVGs, the number of hidden 
nodes was ten, the training rate was 0.07 and training stopped automatically when the overall Gini 
coefficient was minimised.  

Training data were sampled from (4 km2) vegetation and environmental data. In all cases, approximately 
half of the training data consisted of presences for the target vegetation class with the remainder 
(absences) equally divided among the remaining classes. Twenty percent of the sample was then used as 
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test data. Appendix A, Table 3 provides the sample sizes for the ecoregions and Appendix A, Table 4 
provides the sample sizes for the MVGs. 

 

Table 5 List of the environmental variables used in the classifications to rank the importance of the variables  

BIOCLIMATIC VARIABLES 

CODE NAME 

BioClim1  Annual Mean Temperature 

BioClim2  Mean Diurnal Range 

BioClim3  Isothermality  

BioClim4 Temperature Seasonality  

BioClim5 Max Temperature of Warmest Period 

BioClim6 Min Temperature of Coldest Period 

BioClim7 Temperature Annual Range  

BioClim8 Mean Temperature of Wettest Quarter 

BioClim9 Mean Temperature of Driest Quarter 

BioClim10 Mean Temperature of Warmest Quarter 

BioClim11 Mean Temperature of Driest Quarter 

BioClim12 Annual Precipitation 

BioClim13 Precipitation of Wettest Period 

BioClim14 Precipitation of Driest Period 

BioClim15 Precipitation Seasonality (Coefficient of Variation) 

BioClim16 Precipitation of Wettest Quarter 

BioClim17 Precipitation of Driest Quarter 

BioClim18 Precipitation of Warmest Quarter 

BioClim19 Precipitation of Coldest Quarter 

BioClim20 Annual Mean Radiation 

BioClim21 Highest Period Radiation 

BioClim22 Lowest Period Radiation 

BioClim23 Radiation Seasonality  

BioClim24 Radiation of Wettest Quarter 

BioClim25 Radiation of Driest Quarter 

BioClim26 Radiation of Warmest Quarter 

BioClim27 Radiation of Coldest Quarter 

BioClim28 Annual Mean Moisture Index 

BioClim29 Highest Period Moisture Index 

BioClim30 Lowest Period Moisture Index 

BioClim31 Moisture Index Seasonality  

BioClim32 Mean Moisture Index of Highest Quarter MI 

BioClim33 Mean Moisture Index of Lowest Quarter MI 

BioClim34 Mean Moisture Index of Warmest Quarter 

BioClim35 Mean Moisture Index of Coldest Quarter 

See Houlder et al. (2000) for a full description of the BioClim variables 
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2.5 Analysis methods 

2.5.1 CLASSIFICATION ACCURACY AND UNCERTAINTY 

To calculate accuracy, the confusion matrices and Kappa, we applied the best models we obtained to 
classify all the 4 km2 patterns across the entire continent. Overall producer accuracy was calculated as the 
percentage correspondence between the predicted classes and the mapped classes. The accuracy by class 
was calculated in the same way. The confusion matrices show in detail how errors (confusion) in each class 
are distributed among the other classes. Kappa is a classification statistic (Hudson and Ramm 1987) that 
uses the confusion matrix to provide an overall estimate of the classification’s ability to discriminate 
classes. These statistics provide an overview of how well the ANN classifiers can separate environments 
that are characteristic of the vegetation mapping classes. As mentioned previously, the inability to do so 
perfectly, that is, confusion, has many possible sources. 

2.5.2 POSSIBLE CLIMATE CHANGE IMPACTS 

The ANN classifiers can assess possible climate change impacts using a variety of techniques. The simplest 
approach is to apply the ANNs to an altered set of input patterns that represent a future climate and map 
the reclassified new environments. By comparing these new classified maps with the original unclassified 
map we calculate the transition matrixes that show the areas that become more favourable to some other 
class or remains favourable to the class that is mapped.  

Vector angle dissimilarity or stress 

The ANNs provide much more information than is apparent in a classification, where the output node with 
the largest value is chosen as a pattern’s (location’s) classification. By using the values of all the output 
nodes we calculated the dissimilarity of this vector to the ‘ideal’ vector with the value of 1.0 for the class 
that is mapped at that location and all other values of 0.0. Hilbert and Van Den Muyzenberg (1999) defined 
dissimilarity (D) by the angle (γ) between the ‘ideal’ vector for the mapped forest type and the vector 
produced by the model for the environment at that location. The angle (radians) between two vectors can 
be found from 

               
mmee

me
⋅⋅

⋅
=γcos      (1) 

where (e) is the neural net output vector and (m) is the ‘ideal’ vector consisting of 1.0 for the mapped 
vegetation type and 0.0 otherwise. D is defined as γ divided by π/2, which normalises the index to the range 
[0,1]. A location that is mapped as Rainforest and vine thickets with a dissimilarity of 0.1, for example, has 
an environment that is more typical of this class than another location, also mapped as this class, with a 
dissimilarity of 0.4. Hilbert and colleagues (Hilbert et al. 2001; Hilbert and Ostendorf 2001) have interpreted 
this vector angle dissimilarity as an index of relative environmental stress. It could also be thought of as a 
propensity to change. Dissimilarity greater than 0.5 indicates an environment that is more like some other 
class than the one that is mapped.  

Vector angle dissimilarity is illustrated in Figure 3 for the case where two environmental classes (EC1 and 
EC2) are distinguished. Our higher dimensional cases are analogous. Assuming that EC1 corresponds with 
the mapped vegetation class, the ideal or reference vector is V0, coinciding with the EC1 axis, and has a 
dissimilarity of 0.0. V1 (0.82, 0.13) illustrates the vector from the classification in the baseline climate with 
the angle with respect to V0 of θ1 so the dissimilarity (D1) is approximately 0.15. V2, with a dissimilarity of 
approximately 0.3, is an example of a possible result under a moderate climate change scenario, for the 
same geographic location. The environment is now less like EC1 than it was and is now proportionately 
much more like EC2. However, V1 is still in the space (yellow) where the environment is more like EC1 than 
EC2. We interpret the increased dissimilarity of this location from 0.15 to 0.3 as an indication that the local 
biodiversity, corresponding to the classified environment EC1, will be stressed in this climate change 
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scenario because its environment has become less like the ‘ideal’ environment for this vegetation class as a 
result of climate change. V3, with a dissimilarity of approximately 0.6, is an example of a possible result 
under a more extreme climate change scenario. We interpret this as greater environmental change, 
resulting in greater propensity for change in biodiversity than in the moderate climate change scenario. 
Now, the vector component for EC2 is greater than for EC1. In terms of the continuous measure of stress 
(D), this is immaterial. However, when the ANN is used to classify and map environments, this means that 
this location will be mapped as having an EC2 environment. This result does not predict that this location 
will have vegetation class 2 in the future date corresponding to this climate change scenario. It does say 
that the environment at this location will become more like the environment typical of the second 
vegetation class so ecological processes are likely to change the character of the vegetation in this place in 
the direction of the new class.  

 

Figure 3 An illustration of how vector angle dissimilarity is calculated 

Inevitably, dissimilarity includes aspects of classification confusion, but this confusion is unchanged when 
the model is applied to a new scenario. So, when considering climate change scenarios, the change in 
dissimilarity is due mostly to the change in climate. Here we calculated the mean and standard error of the 
dissimilarities from the mapped classes for the baseline climate and the two climate change scenarios. We 
also calculated and mapped the difference between the dissimilarity for the baseline climate classification 
and the dissimilarity for each of the two climate change scenarios. This shows the areas where climate 
change improves the local environment for the current vegetation and those areas where the climate 
becomes less suitable, while lessening the confusion inherent in the classifications.  

Biotically scaled environmental stress 

Dissimilarities as defined above were used in the project’s four biome reports. For the synthesis report, we 
also calculated a measure of environmental change that uses the Bray–Curtis dissimilarity measure at all 
map locations. This is a pairwise distance measure between the ANN classification output in the baseline 
climate and the classification output in the A1B and A1FI climate scenarios, using all 23 outputs from the 
model that represent environmental suitability for each of the 23 vegetation types. Unlike the dissimilarity 
discussed above based on ideal vectors, it is not in reference to the mapped vegetation and considers 
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changes in vector length as well as angle. This metric of environmental change is entirely independent of 
any confusion in the original classification. 

Novel or non-analogue environments 

The vector angle dissimilarity metric uses only the angle of the vector with respect to the ideal vector 
representing the mapped vegetation class, but vectors have both a direction and magnitude. In climate 
change scenarios where there are major changes in climatic patterns, the magnitude (length) of the vector 
may also change and possibly become quite small. In other words, the ANN classifier may produce an 
output vector for some locations where the suitability for all of the classified environment types is low. 
When this happens it is an indication that a new kind of environment exists that does not correspond to 
any of the classified environments based on the vegetation–environment patterns that exist today. We 
applied a very simple method to assess this by mapping the value of the largest ANN output value, in each 
of the climates, for each location across the continent. Roughly, values below 0.5 indicate environments 
that cannot be well separated and very low values indicate novel environments. There is little we can infer 
about the ecology of these very novel environments from this measure other than that they are not well-
suited to any of the vegetation classes that we observe now in Australia. 
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3 RESULTS 

3.1 Classification accuracy 

3.1.1 ECOREGIONS 

Classification of the seven ecoregions is highly accurate: 96.8% producer accuracy with a Kappa value of 
0.95. The classification map is given in Figure 4 and the confusion matrix is presented in Table 6. It is 
apparent that the 23 climate variables are sufficient to distinguish these broad ecoregion classes. 

 

Figure 4 Map of ecoregion environments produced by the classification in the current climate 

Table 6 Confusion matrix for the ecoregion classification (4 km2 patterns) 

  MAPPED 
 
 
 
 
 
PREDICTED 

 1 4 7 8 10 12 13 

1 6 907 0 2 155 0 0 0 0 

4 0 131 892 2 775 2 825 13 1 182 0 

7 11 383 443 679 759 0 0 16 502 

8 0 1 510 2 837 128 662 0 2 195 4 968 

10 0 3 178 0 0 2 937 0 0 

12 0 223 0 2 580 0 186 107 8 637 

13 0 0 1 232 121 0 784 759 515 
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3.1.2 MAJOR VEGETATION GROUPS 

Classification of the 23 MVGs is less accurate than for the ecoregions: 64.2% producer accuracy with a 
Kappa value of 0.61. While the accuracy is not high, the expected accuracy of a random model is only 2.3%. 
The map produced by the classification is presented in Figure 5. The producer accuracies and Kappa values 
are presented by class in Table 7 and the confusion matrix is presented in Table 8.  

 

Figure 5 Map of the MVG environments as classified under the baseline climate 

Table 7 Accuracies (percent) and Kappa values by MVG 

MAJOR VEGETATION GROUP ACCURACY KAPPA 
Rainforest and vine thickets 66.6 0.663 
Eucalypt tall open forest 75.2 0.750 
Eucalypt open forest 72.2 0.703 
Eucalypt low open forest 85.3 0.853 
Eucalypt woodlands 50.6 0.440 
Acacia forests and woodlands 54.1 0.509 
Callitris forests and woodlands 85.5 0.852 
Casuarina forests and woodlands 73.1 0.722 
Melaleuca forests and woodlands 73.7 0.733 
Other forests and woodlands 60.1 0.593 
Eucalypt open woodlands 57.1 0.546 
Tropical eucalypt woodlands/grasslands 93.1 0.929 
Acacia open woodlands 54.7 0.528 
Mallee woodlands and shrublands 74.6 0.731 
Low closed forest and tall closed shrubland 83.0 0.828 
Acacia shrublands 62.7 0.576 
Other shrublands 60.6 0.594 
Heath 81.1 0.810 
Tussock grasslands 66.5 0.638 
Hummock grasslands 72.4 0.679 
Other grasslands, herblands, sedgelands and rushlands  60.5 0.600 
Chenopod shrublands, samphire shrubs and forblands 75.7 0.739 
Mangroves 81.7 0.816 
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Table 8 Confusion matrix for the MVG classification (4 km2 patterns) 

   MAPPED 

PREDICTED 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

1 7 533 611 3 146 27 3 446 929 35 46 122 139 410 20 0 1 138 2 92 17 84 6 338 0 22 

2 621 7 518 5 064 13 2 051 132 22 18 60 14 1 350 0 0 5 117 3 278 47 401 0 114 32 0 

3 1 110 1 271 70 466 36 27 025 201 98 144 611 316 945 705 0 93 28 55 219 80 1 148 22 322 43 90 

4 52 60 1 115 1 046 1 132 3 12 6 23 26 79 0 0 218 5 3 18 27 199 2 56 2 2 

5 799 37 8 248 12 160 460 7 453 442 1 114 1 354 893 8 287 210 211 2 112 41 1 375 916 39 5 476 1 415 115 1 487 38 

6 321 1 269 0 16 504 61 265 245 894 52 723 2 932 1 6 057 1 347 19 11 768 1 094 2 2 054 4 796 167 1 155 0 

7 45 1 441 1 11 641 1 803 7 752 874 1 77 2 391  0 322 2 337 13 2 144 201 4 1 258 121 53 554 0 

8 32 1 60 0 5 332 2 547 149 27 749 187 75 1 000 0 1 452 2 246 4 6 332 116 1 2 657 4 556 93 2 823 2 

9 30 7 823 0 8 315 126 1 86 14 778 410 948 83 66 733 1 79 207 8 915 430 79 103 12 

10 8 4 275 0 6 084 2 173 3 49 175 10 207 3 310 43 734 488 14 1 876 606 3 1 688 2 893 372 243 1 

11 40 130 129 13 13 209 1 753 52 188 144 695 61 534 99 1 321 668 0 3 133 325 0 3 497 4 970 64 388 0 

12 61 0 3 969 0 16 820 39 0 1 1 259 222 3 862 22 459 1 0 0 16 11 0 1 248 2 223 152 0 26 

13 0 0 0 0 1 335 6 480 48 151 4 189 2 836 0 40 634 155 0 9 094 745 0 2 498 4 746 379 1 782 0 

14 0 1 216 8 9 033 2 046 67 2 851 174 492 805 0 790 70 266 33 3 673 1 331 1 2 109 2 173 63 2 471 4 

15 26 85 67 3 6 899 254 19 116 0 62 137 0 27 3 167 4 654 1 901 1 539 13 1 54 52 178 0 

16 0 0 0 0 1 977 13 291 14 1 154 43 333 4 113 25 10 187 2 623 44 123 162 1 770 0 4 184 37 273 290 4 821 6 

17 17 3 168 0 4 431 4 059 17 376 168 235 515 5 1 458 4 473 218 6042 20 859 34 1 036 1 609 97 1 776 7 

18 22 59 957 47 3 025 168 9 29 71 84 52 0 12 384 128 813 184 1 299 30 0 75 3 2 

19 6 0 142 0 8 180 3 532 20 349 35 1 155 5 904 69 5 195 135 0 4 871 627 0 83 627 6 837 1 077 4 537 7 

20 0 0 0 0 2 062 1 963 0 422 241 196 4 307 200 1 365 797 0 8 880 836 0 2 485 217 187 124 781 1 

21 445 178 691 18 1 425 716 23 92 337 263 1 004 69 1 231 370 129 575 430 16 2 605 1 337 7 480 1 840 48 

22 0 0 448 0 4 747 2 117 41 1 145 7 60 922 0 3 188 1 471 2 10 468 1 947 0 6 286 7 019 603 78 402 1 

23 60 0 745 0 1 436 92 0 26 142 58 102 115 1 10 0 111 47 2 293 231 161 147 1 143 



16   |  CSIRO Climate Adaptation Flagship Working Paper 13H • September 2012  

3.2 Projected areas in future climates and transition matrices 

3.2.1 ECOREGIONS 

Figures 6 and 7 map the ecoregions’ environments in 2070 under the medium and high warming scenarios. 
Table 9 compares the total areas of these environments with the modelled (classified) area of these in the 
current climate. Tables 10 and 11 show how areas that are now classified as most appropriate to each of 
the ecoregions change to other classes under the two climate scenarios. 

Figure 6 Distribution of ecoregion environments in the medium warming scenario  

Figure 7 Distribution of ecoregion environments in the high warming scenario  
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Table 9 Areas of ecological and environmental ecoregional classes as predicted now and in the two climate change 
scenarios 

ECOREGION AREA OF 
MAPPED 
ECOREGIONS 
(KM2) 

AREAS OF PREDICTED ENVIRONMENTAL CLASS (KM2) 

NOW PREDICTED 
AREA (KM2) 

MED 2070 
AREA (KM2) 

HIGH 2070 
AREA (KM2) 

1) Tropical and subtropical moist broadleaf forests 27 672 36 248 25 416 19 092 
4) Temperate broadleaf and mixed forest 548 744 554 748 444 832 314 108 
7) Tropical and subtropical grasslands, savannas and 
shrublands 1 810 712 1 845 336 1 927 684 1 814 324 

8) Temperate grasslands, savannas and shrublands 539 788 560 688 656 376 576 164 
10) Montane grasslands and shrublands 11 800 2 4 460 6 732 696 
12) Mediterranean forests, woodlands and scrub 761 072 790 188 702 836 647 716 
13) Deserts and xeric shrublands 3 158 488 3 046 608 3 094 400 3 486 176 

Total 6 858 276 6 858 276 6 858 276 6 858 276 

 

Table 10 Transition matrix for the medium scenario, compared to the predicted map (1 km2) 

 MAPPED 

PREDICTED 

  1 4 7 8 10 12 13 

1 24 188 0 1 228 0 0 0 0 
4 0 401 388 21 468 3 368 18 608 0 0 
7 11 852 15 428 1 665 460 12 676 0 0 222 268 
8 0 102 524 77 504 427 076 0 40 120 9 152 
10 0 880 0 0 5 852 0 0 
12 208 32 764 44 24 860 0 640 128 4 832 
13 0 1 764 79 632 92 708 0 109 940 2 810 356 

 

Table 11 Transition matrix for the high scenario, compared to the predicted map (1 km2) 

 MAPPED 

PREDICTED 

  1 4 7 8 10 12 13 

1 19 004 0 88 0 0 0 0 

4 0 281 176 8 324 1 172 23 436 0 0 

7 17 212 18 148 1 591 656 14 868 0 0 172 440 

8 0 98 064 44 060 336 392 0 88 404 9 244 

10 0 104 0 0 592 0 0 

12 32 87 196 160 19 324 0 529 140 11 864 

13 0 70 060 201 048 188 932 432 172 644 2 853 060 
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3.2.2 MAJOR VEGETATION GROUPS 

Figures 8 and 9 map the MVGs’ environments in 2070 under the medium and high warming scenarios. 
Table 12 compares the total areas of these environments with the modelled (classified) area of these in the 
current climate. Table 13 lists the area of each MVG environment in the current climate, the two scenarios 
and the percent changes in the scenarios. Tables 14 and 15 show how areas that are now classified as most 

appropriate to each of the ecoregions change to other classes under the two climate scenarios. 

Figure 8 Distribution of MVG environments in the medium warming scenario  

 

Figure 9 Distribution of MVG environments in the high warming scenario  
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Table 12 MVG areas as predicted now and areas of environmental classes in the two climate change scenarios 

MAJOR VEGETATION GROUP 
MAP AREA 

(KM2) 

NOW 
PREDICTED 
AREA (KM2) 

MED 2070 
AREA (KM2) 

HIGH 2070 
AREA (KM2) 

Rainforest and vine thickets 44 912 68 656 52 904 29 876 
Eucalypt tall open forest 39 868 71 440 36 656 42 080 
Eucalypt open forest 389 756 420 112 341 584 320 088 
Eucalypt low open forest 4 896 16 344 12 524 10 644 
Eucalypt woodlands 1 266 276 810 136 574 824 361 380 
Acacia forests and woodlands 452 568 446 664 348 232 387 164 
Callitris forests and woodlands 36 276 128 136 162 904 92 532 
Casuarina forests and woodlands 151 520 229 656 163 508 207 388 
Melaleuca forests and woodlands 79 952 112 960 73 412 28 924 
Other forests and woodlands 67 696 124 996 82 488 140 900 
Eucalypt open woodlands 430 980 369 408 631 860 898 284 
Tropical eucalypt woodlands/grasslands 96 412 209 476 355 944 362 152 
Acacia open woodlands 297 008 284 304 242 080 223 236 
Mallee woodlands and shrublands 376 396 394 428 318 468 171 244 
Low closed forest and tall closed shrubland 22 352 77 016 42 292 23 032 
Acacia shrublands 785 504 821 240 746 396 418 180 
Other shrublands 137 592 190 412 93 724 148 836 
Heath 6 372 29 812 6 200 3 020 
Tussock grasslands 503 116 505 220 750 964 751 068 
Hummock grasslands 1 199 600 967 388 976 604 920 940 
Other grasslands, herblands, sedgelands and rushlands  49 304 85 288 132 316 278 296 
Chenopod shrublands, samphire shrubs and forblands 414 272 475 496 702 720 1 023 004 

Mangroves 5 648 19 688 9 672 16 008 
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Table 13 Areas of predicted MVG environmental classes in the current and two future climates (km2) and percent 
changes in area in the two climate change scenarios 

ENVIRONMENTAL CLASS BASED ON  
MAJOR VEGETATION GROUPS 

NOW 
PREDICTED 
AREA (KM2) 

MED 2070 
AREA (KM2) 

HIGH 2070 
AREA (KM2) 

PERCENT 
CHANGE 

MED 2070 
CF. NOW  

PERCENT 
CHANGE 

HIGH 2070 
CF. NOW 

Rainforest and vine thickets 68 656 52 904 29 876 -22.94 -56.48 
Eucalypt tall open forest 71 440 36 656 42 080 -48.69 -41.10 
Eucalypt open forest 420 112 341 584 320 088 -18.69 -23.81 
Eucalypt low open forest 16 344 12 524 10 644 -23.37 -34.88 
Eucalypt woodlands 810 136 574 824 361 380 -29.05 -55.39 
Acacia forests and woodlands 446 664 348 232 387 164 -22.04 -13.32 
Callitris forests and woodlands 128 136 162 904 92 532 27.13 -27.79 
Casuarina forests and woodlands 229 656 163 508 207 388 -28.80 -9.70 
Melaleuca forests and woodlands 112 960 73 412 28 924 -35.01 -74.39 
Other forests and woodlands 124 996 82 488 140 900 -34.01 12.72 
Eucalypt open woodlands 369 408 631 860 898 284 71.05 143.17 
Tropical eucalypt woodlands/grasslands 209 476 355 944 362 152 69.92 72.88 
Acacia open woodlands 284 304 242 080 223 236 -14.85 -21.48 
Mallee woodlands and shrublands 394 428 318 468 171 244 -19.26 -56.58 
Low closed forest and tall closed shrubland 77 016 42 292 23 032 -45.09 -70.09 
Acacia shrublands 821 240 746 396 418 180 -9.11 -49.08 
Other shrublands 190 412 93 724 148 836 -50.78 -21.83 
Heath 29 812 6 200 3 020 -79.20 -89.87 
Tussock grasslands 505 220 750 964 751 068 48.64 48.66 
Hummock grasslands 967 388 976 604 920 940 0.95 -4.80 
Other grasslands, herblands, sedgelands and rushlands  85 288 132 316 278 296 55.14 226.30 
Chenopod shrublands, samphire shrubs and forblands 475 496 702 720 1 023 004 47.79 115.14 

Mangroves 19 688 9 672 16 008 -50.87 -18.69 
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Table 14 Transition matrix for the medium scenario 2070, compared to the predicted map (km2) 

 MAPPED 

PREDICTED 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

1 23 352 572 13 056 124 9 964 1 236 40 20 312 4 656 32 0 16 88 0 44 140 16 4 2 260 0 968 

2 6 252 20 372 6 768 388 304 0 0 4 24 8 0 0 0 0 128 0 84 388 16 0 1 912 0 8 

3 7 812 31 060 243 960 3 132 27 924 172 12 1 728 2 780 2 280 40 10 164 0 68 224 4 2 076 4 240 28 0 1 284 0 2 596 

4 332 492 5 384 2 684 1 900 4 164 8 56 124 0 0 0 664 24 0 356 172 0 0 112 0 48 

5 8 372 908 79 256 5 668 311 660 15 100 27 948 8 924 20 644 10 940 11 016 1 612 2 328 18 224 10 348 2 056 12 628 4 716 5 296 240 5 324 7 868 3 748 

6 7 436 204 1 956 196 35 592 120 920 9 644 3 516 184 4 992 1 564 40 11 560 9 296 6 764 72 704 10 672 7 256 4 640 31 844 2 512 4 248 492 

7 1 044 344 9 612 532 70 068 7 168 24 096 932 68 308 2 732 0 0 1 712 27 776 876 7 024 3 336 3 008 1 772 236 248 12 

8 204 0 348 20 15 368 11 516 1 464 31 192 188 1 044 20 168 1 976 61 648 11 264 3 932 1 272 4 712 276 5 480 360 10 992 64 

9 20 12 2 720 4 4 324 52 0 7 356 48 580 1 340 1 180 4 228 8 4 4 536 28 8 504 1 192 924 84 304 

10 648 460 8 900 28 17 688 5 220 1 184 3 540 6 220 20 744 1 388 284 2 100 3 452 828 604 4 808 424 628 2 640 576 64 60 

11 2 592 2 876 6 120 72 75 260 24 736 4 028 7 976 5 732 41 996 253 624 3 228 17 384 5 432 108 44 924 8 944 344 20 940 100 504 1 884 2 472 684 

12 284 0 7 148 0 83 920 180 0 24 11 656 11 692 22 216 186 228 72 0 0 10 588 896 0 4 404 11 476 1 768 0 3 392 

13 0 4 0 0 3 444 79 756 752 8 388 0 3 268 2 456 0 71 444 388 476 37 868 8 892 40 5 460 16 644 756 2 044 0 

14 28 8 4 388 1 304 30 356 2 812 176 9 868 8 700 420 11 300 0 1 644 176 040 1 532 27 828 26 072 1 072 1 308 11 340 180 2 000 92 

15 216 2 268 44 4 7 156 4 0 12 0 2 512 632 0 0 496 9 096 3 692 15 396 340 0 0 400 24 0 

16 336 8 220 0 9 284 92 004 10 644 75 716 608 928 17 364 24 68 756 17 664 1 396 286 456 23 416 164 31 488 93 996 6 724 9 164 36 

17 60 348 3 732 52 8 216 8 444 144 3 392 628 1 012 432 0 10 020 7 212 3 036 7 164 30 448 640 1 264 4 632 1 556 1 192 100 

18 644 604 332 600 68 0 0 80 240 256 0 0 0 4 116 0 2 172 788 0 0 240 0 56 

19 5 164 8 608 15 296 688 35 208 38 680 13 732 6 772 2 120 11 208 27 776 1 636 15 732 308 204 35 504 8 716 360 373 080 35 852 20 984 92 760 576 

20 0 0 12 0 2 248 15 220 0 26 908 2 256 1 600 7 312 1 144 35 156 28 484 4 220 204 10 660 0 13 136 591 232 3 068 17 872 88 

21 3 668 1 596 7 040 824 10 848 1 540 212 1 940 1 428 312 5 228 632 320 248 232 14 600 1 388 556 7 748 51 868 18 148 56 1 884 

22 4 696 2 180 0 48 960 21 864 33 896 31 344 160 7 736 2 452 0 45 804 62 796 3 364 51 700 14 384 116 30 984 6 628 12 684 324 348 620 

23 188 0 1 640 24 376 36 0 16 376 272 20 56 0 272 4 0 36 0 996 44 1 396 60 3 860 
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Table 15 Transition matrix for the high scenario 2070, compared to the predicted map (km2) 

 MAPPED 

PREDICTED 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

1 15 672 252 8 432 64 3 220 112 24 8 156 108 56 512 0 0 28 0 24 20 4 24 464 0 696 

2 8 564 17 036 11 416 512 212 0 4 12 128 0 0 0 0 0 236 0 796 776 0 0 2 380 0 8 

3 5 340 26 408 187 080 3 732 38 184 984 0 5 868 11 112 7 504 3 172 18 108 0 112 364 372 4 004 2 640 252 84 2 264 0 2 504 

4 120 184 4 940 56 4 428 0 12 56 20 84 0 0 0 304 16 0 140 96 0 0 152 0 36 

5 5 988 3 708 61 812 5 388 154 476 2 428 10 520 6 308 20 308 8 528 8 060 1 956 924 22 768 10 256 888 14 620 1 324 4 164 640 4 268 9 868 2 180 

6 11 572 268 5 756 12 55 032 84 880 5 852 3 648 544 2 388 14 556 972 5 024 20 588 3 272 63 204 11 812 176 19 844 58 512 756 17 696 800 

7 104 608 21 952 1 544 51 588 84 6 948 28 128 216 4 0 0 76 4 044 408 1 976 2 216 332 8 184 76 8 

8 4 0 164 116 44 696 17 508 5 148 16 276 40 260 328 364 1 528 41 532 26 548 7 864 5 028 7 652 12 568 4 432 396 14 876 60 

9 88 540 3 152 0 1 108 4 0 4 4 464 2 964 1 332 5 064 0 0 96 0 64 12 1 668 7 664 520 0 180 

10 5 584 1 104 26 700 112 43 940 10 028 368 4 348 15 468 10 840 1 060 3 688 1 204 1 176 1 124 1 600 3 144 816 1 808 5 584 576 84 544 

11 6 600 1 184 16 696 100 135 920 42 484 1 256 35 020 5 044 29 528 248 948 536 37 736 20 164 548 128 032 25 316 112 22 608 123 340 4 548 10 880 1 684 

12 452 0 6 428 0 81 956 584 0 64 27 864 9 284 36 760 168 084 0 0 0 1 680 696 0 12 336 12 424 888 64 2 588 

13 0 0 0 0 7940 69 628 1 264 7 224 16 1 044 2 624 0 43 064 304 3 596 41 400 15 936 4 632 1 580 16 704 660 5 620 0 

14 316 312 6 380 2 092 22 736 2 152 1 500 452 8 200 560 260 0 840 92 992 1 024 3 264 17 384 3 268 32 2 992 476 3 964 48 

15 256 1 960 12 4 744 0 0 0 0 600 0 0 0 80 3 316 1 836 12 848 364 0 0 988 24 0 

16 1 724 236 2 696 100 11 008 71 660 16 400 15 224 20 2 988 5 304 12 50 484 19 192 1 608 123 828 12 692 68 32 680 29 308 14 548 6 400 0 

17 440 1 780 6 548 120 6 376 14 136 236 1 292 704 4 484 376 4 11 316 3 676 2 228 48 868 13 808 4 180 2 368 8 624 1 564 15 652 56 

18 560 1 028 660 128 64 0 0 64 12  116 0 40 0 0 48 0 8 80 0 0 212 0 0 

19 784 7 352 16 584 1 020 20 540 21 320 5 572 3 000 1 436 5 948 18 604 1 104 23 076 676 920 54 588 8 392 372 321 984 127 472 15 556 94 576 192 

20 0 0 88 0 744 24 216 0 64 696 2 408 1 148 8 500 1 720 45 548 25 900 28 242 368 13 496 116 24 472 454 048 2244 9 000 200 

21 3 904 1 440 19 056 832 26 596 3 808 344 844 13 092 24 572 5 260 6 776 444 68 520 34 052 3 416 780 15 576 97 608 16 376 88 2 844 

22 92 6 040 9 548 376 97 360 80 604 72 688 65 176 596 11 420 13 848 0 63 116 144 804 17 192 66 892 24 656 92 29 668 17 792 13 548 286 576 920 

23 492 0 4 012 36 1268 44 0 44 1 200 412 356 536 0 16 4 96 156 20 1 276 128 1 720 52 4 140 
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3.3 Dissimilarity and changes in dissimilarity 

3.3.1 ECOREGIONS 

Figure 10 displays ecoregion dissimilarity, inferred by the classification, in the current climate. For the most 
part, dissimilarity is concentrated at the edges where ecoregions are adjacent. This is expected since the 
precise boundaries of ecoregions are hard to delineate. This map further illustrates the high certainty of the 
environmental classification by showing that the uncertainty is concentrated on the edges rather than in a 
biased or random way. Dissimilarity maps for the ecoregions in the two climate change scenarios are 
presented in Figures 11 and 12.  

Figures 13 and 14 are maps of changes in dissimilarity relative to the current climate. This is calculated as 
the dissimilarity in the climate change scenario minus the dissimilarity in the baseline climate. In a sense, 
these maps remove uncertainty in the classification and emphasise changes due to climate change.  

 

 

Figure 10 Dissimilarity map for the predicted environmental classification in the current climate; darker shading 
indicates greater dissimilarity, with lighter shading indicating little change from the mapped ecoregions (shown in 
colours) 
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Figure 11 Dissimilarity map for the classification in the medium climate change scenario 2070; darker shading 
indicates greater dissimilarity, lighter indicates less dissimilarity, colours indicate the environmental class 

Figure 12 Dissimilarity map for the classification in the high climate change scenario 2070; darker shading indicates 
greater dissimilarity, lighter indicates less dissimilarity, colours indicate the environmental class 

 



 

CSIRO Climate Adaptation Flagship Working Paper 13H • September 2012  |    25 

Figure 13 Difference between the dissimilarity for the baseline climate environmental classification and that of the 
medium climate change scenario 2070 environmental classification; darker shading indicates a reduction in 
dissimilarity, while lighter shading indicates an increase, superimposed on the mapped ecoregions in colour 

 

Figure 14 Dissimilarity change map for the high climate change scenario 2070; darker shading indicates a reduction 
in dissimilarity, while lighter shading indicates an increase or no change, superimposed on the mapped ecoregions 
in colour 

3.3.2 MAJOR VEGETATION GROUPS 

Figure 15 displays MVG dissimilarity, inferred by the classification, in the current climate. Dissimilarity maps 
for the predicted MVG environments in the two climate change scenarios are presented in Figures 16 and 
17. The spatial pattern of dissimilarity is more complex than it is for the ecoregions and is difficult to see at 
this map scale. But in general, dissimilarity is greater throughout the MVGs and not solely concentrated at 
the edges. The mean dissimilarity for each MVG (averaged across all the 4 km2 mapped locations) in each of 
the climates is graphed in Figure 18. MVGs 5, 6, 11 and 13 have mean dissimilarities greater than 0.5. This 
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indicates the classification’s relatively poor ability to distinguish these environments from those of some 
other class or classes. Mean dissimilarity equals or exceeds 0.5 in the two climate change scenarios for all 
classes with the exception of Tropical eucalypt woodlands/grasslands (MVG 12), which is a component of 
the Northern savannah and grassland biome.  

Figure 15 Dissimilarity map for the classification of MVG environments in the current climate; darker shading 
indicates greater dissimilarity, superimposed on the mapped MVGs 

 

 

Figure 16 Dissimilarity map for the classification of MVG environments in the medium climate change scenario; 
darker shading indicates greater dissimilarity, superimposed on the mapped MVGs 
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Figure 17 Dissimilarity map for the classification of MVG environments in the high climate change scenario; darker 
shading indicates greater dissimilarity, superimposed on the mapped MVGs 

 

Figure 18 Mean dissimilarity now and in two climate change scenarios based on the NVIS mapping  

Figures 19 and 20 map change in dissimilarity relative to the current climate. This is calculated as the 
dissimilarity in the climate change scenario minus the dissimilarity in the baseline climate. In a sense, these 
maps remove uncertainty in the classification and emphasise changes due to climate change. Like the 
dissimilarity maps, these maps are difficult to interpret visually at this scale. 



28   |  CSIRO Climate Adaptation Flagship Working Paper 13H • September 2012  

 

Figure 19 Dissimilarity change map for the medium climate change scenario; darker shading indicates a reduction in 
dissimilarity, while lighter shading indicates an increase 

Figure 20 Difference between the dissimilarity for the baseline climate environmental classification change map and 
that of the medium climate change scenario 2070 environmental classification; darker shading indicates a reduction 
in dissimilarity, while lighter shading indicates an increase, superimposed on the mapped MVGs in colour 

 

3.4 Biotically scaled environmental stress 

Using this measure produces a more continuous picture of environmental change than the change in 
dissimilarity because the vegetation categories are not used explicitly. The results are presented in Figure 
21. The map highlights the regions where environmental change resulting from global climate change may 
be more ecologically significant.  
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Figure 21 Dissimilarity change map for the high climate change scenario; darker shading indicates a reduction in 
dissimilarity, while lighter shading indicates an increase 
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Figure 22 displays the mean change in dissimilarity for the MVG classes using this method.  

 

 

Figure 22 Mean biotically scaled dissimilarity for each of the environmental classes in both climate change scenarios 

 

3.5 Ranking the importance of variables in the classification of 
vegetation environments  

All the individual classifications of the vegetation classes were highly accurate, based on the Gini coefficient 
of the models. The resulting top 20 variable rankings are listed in Table 16 (MVGs) and Table 17 
(ecoregions). Analyses of these results are beyond the scope of this report, but they generally conform to 
ecological expectations. For example, the highly ranked BioClim variables tend to be those that distinguish 
summer from winter rainfall–dominated areas.  
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Table 16 Ranking of the top 20 variables in the classification of environments for each major vegetation group 

RAINFORESTS 
AND VINE 
THICKETS 

EUCALYPT 
TALL OPEN 
FORESTS 

EUCALYPT 
OPEN 
FORESTS 

EUCALYPT 
LOW OPEN 
FORESTS 

EUCALYPT 
WOODLANDS 

ACACIA 
FORESTS AND 
WOODLANDS 

CALLITRIS 
FORESTS AND 
WOODLANDS 

CASUARINA 
FORESTS AND 
WOODLANDS 

MELALEUCA 
FORESTS AND 
WOODLANDS 

OTHER 
FORESTS AND 
WOODLANDS 

EUCALYPT 
OPEN 
WOODLANDS 

TROPICAL 
EUCALYPT 
WOODLANDS 
/GRASSLANDS 

BioClim34 BioClim08 BioClim28 BioClim34 BioClim35 BioClim32 BioClim04 BioClim15 BioClim32 BioClim31 BioClim35 BioClim32 

BioClim31 A_KSAT BioClim35 BioClim35 BioClim29 BioClim15 BioClim15 BioClim22 BioClim24 BioClim32 BioClim04 BioClim35 

BioClim32 BioClim15 BioClim29 BioClim28 BioClim15 BioClim25 BioClim24 BioClim07 BioClim27 BioClim29 BioClim22 BioClim28 

BioClim14 BioClim19 BioClim34 BioClim08 BioClim32 BioClim35 BioClim25 BioClim23 BioClim35 BioClim15 BioClim09 BioClim04 

BioClim19 BioClim35 BioClim32 BioClim33 BioClim22 BioClim29 BioClim03 BioClim27 BioClim29 BioClim25 BioClim31 BioClim23 

BioClim29 BioClim26 BioClim31 BioClim29 BioClim04 BioClim04 BioClim31 BioClim29 BioClim22 BioClim35 BioClim27 BioClim27 

BioClim23 BioClim31 BioClim23 EROSIONAL BioClim31 BioClim24 MRVBF BioClim32 BioClim06 BioClim09 BioClim34 BioClim34 

BioClim30 MRVBF BioClim15 BioClim01 BioClim34 SOILDEPTH BioClim28 BioClim25 BioClim31 BioClim04 BioClim15 BioClim21 

EROSIONAL BioClim09 BioClim27 BioClim03 BioClim21 BioClim08 BioClim32 BioClim34 SOILDEPTH BioClim34 BioClim29 BioClim07 

BioClim08 BioClim14 BioClim22 BioClim20 BioClim09 BioClim31 BioClim29 BioClim20 BioClim28 BioClim27 BioClim23 MRVBF 

A_KSAT BioClim34 BioClim04 BioClim26 BioClim27 BioClim09 BioClim21 BioClim28 BioClim25 BioClim10 BioClim28 BioClim03 

BioClim35 BioClim05 BioClim13 BioClim30 BioClim26 BioClim02 BioClim35 BioClim04 BioClim15 BioClim22 BioClim25 BioClim15 

BioClim26 BioClim04 BioClim19 BioClim11 BioClim23 SOILPAWHC BioClim09 BioClim03 BioClim20 BioClim08 BioClim32 BioClim06 

BioClim07 BioClim30 BioClim30 BioClim10 BioClim25 BioClim26 BioClim22 BioClim24 BioClim02 BioClim20 BioClim24 BioClim11 

BioClim04 BioClim07 BioClim24 BioClim32 BioClim24 A_KSAT BioClim02 BioClim05 BioClim18 BioClim02 BioClim06 BioClim22 

BioClim03 BioClim02 SOILPAWHC BioClim23 BioClim03 BioClim27 EROSIONAL BioClim35 BioClim26 BioClim23 BioClim26 ROUGHNESS 

ROUGHNESS BioClim10 MRVBF BioClim19 BioClim07 BioClim03 BioClim08 BioClim08 BioClim34 BioClim24 SOILDEPTH BioClim13 

BioClim06 BioClim27 BioClim09 BioClim02 BioClim28 BioClim28 SOILDEPTH SOILPAWHC BioClim07 BioClim01 BioClim21 BioClim29 

BioClim24 BioClim24 BioClim07 A_KSAT BioClim20 BioClim22 BioClim23 BioClim09 MRVBF BioClim26 EROSIONAL BioClim31 

BioClim02 BioClim17 BioClim25 BioClim05 BioClim06 BioClim34 A_KSAT A_KSAT BioClim04 BioClim03 BioClim10 BioClim05 
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Table 16 continued Ranking of the top 20 variables in the classification of environments for each major vegetation group  

ACACIA OPEN 
WOODLANDS 

MALLEE 
WOODLANDS 
AND 
SHRUBLANDS 

LOW CLOSED 
FORESTS AND TALL 
CLOSED 
SHRUBLANDS 

ACACIA 
SHRUBLANDS 

OTHER 
SHRUBLANDS 

HEATHLANDS TUSSOCK 
GRASSLANDS 

HUMMOCK 
GRASSLANDS 

OTHER 
GRASSLANDS, 
HERBLANDS, 
SEDGELANDS AND 
RUSHLANDS 

CHENOPOD 
SHRUBLANDS, 
SAMPHIRE 
SHRUBLANDS AND 
FORBLANDS 

MANGROVES 

BioClim32 BioClim28 BioClim24 BioClim32 BioClim25 BioClim25 BioClim15 BioClim32 BioClim31 BioClim29 ROUGHNESS 

BioClim35 BioClim34 BioClim31 BioClim15 BioClim28 BioClim24 BioClim29 BioClim29 BioClim35 A_KSAT BioClim02 

BioClim04 BioClim08 BioClim08 BioClim35 BioClim15 BioClim31 A_KSAT BioClim31 BioClim15 BioClim32 BioClim29 

BioClim15 BioClim04 BioClim28 BioClim25 BioClim35 BioClim04 BioClim35 BioClim15 BioClim29 BioClim15 EROSIONAL 

BioClim21 BioClim35 BioClim25 BioClim31 BioClim04 BioClim08 BioClim24 BioClim35 BioClim27 MRVBF BioClim03 

BioClim22 BioClim15 BioClim32 BioClim24 BioClim29 BioClim09 BioClim28 BioClim25 BioClim04 BioClim26 BioClim28 

BioClim31 BioClim31 BioClim26 A_KSAT BioClim22 BioClim07 BioClim32 BioClim34 BioClim10 BioClim34 BioClim09 

BioClim29 BioClim24 BioClim21 BioClim22 A_KSAT A_KSAT BioClim25 BioClim27 BioClim22 BioClim23 MRVBF 

BioClim34 BioClim10 BioClim20 BioClim29 BioClim32 BioClim03 BioClim22 BioClim02 BioClim09 BioClim21 BioClim07 

BioClim25 BioClim26 BioClim23 BioClim28 BioClim21 BioClim35 BioClim27 BioClim22 BioClim08 BioClim25 BioClim25 

A_KSAT A_KSAT BioClim04 BioClim08 BioClim24 BioClim02 BioClim04 A_KSAT BioClim25 BioClim31 BioClim35 

BioClim02 BioClim20 BioClim09 BioClim09 MRVBF EROSIONAL BioClim23 BioClim28 A_KSAT BioClim24 BioClim31 

BioClim08 BioClim27 BioClim22 BioClim21 BioClim27 BioClim15 BioClim34 BioClim20 BioClim01 BioClim28 BioClim23 

SOILDEPTH BioClim22 BioClim35 BioClim04 BioClim31 BioClim32 BioClim05 BioClim26 BioClim23 BioClim04 BioClim12 

SOILPAWHC BioClim29 BioClim05 BioClim23 BioClim20 BioClim28 BioClim31 BioClim24 BioClim06 BioClim08 BioClim15 

BioClim09 SOILDEPTH BioClim15 BioClim05 BioClim34 BioClim29 BioClim09 BioClim04 BioClim32 BioClim27 A_KSAT 

BioClim23 BioClim32 BioClim29 BioClim34 BioClim02 BioClim14 BioClim26 BioClim07 BioClim11 BioClim07 BioClim04 

BioClim27 MRVBF BioClim14 BioClim06 BioClim26 BioClim30 BioClim07 SOILPAWHC BioClim21 BioClim22 BioClim06 

BioClim24 SOILPAWHC BioClim27 SOILDEPTH BioClim03 BioClim33 BioClim21 BioClim10 BioClim26 BioClim35 SOILPAWHC 

BioClim28 BioClim07 BioClim34 BioClim10 SOILDEPTH BioClim21 BioClim06 BioClim03 BioClim24 BioClim09 VALLEYBOTTOM 
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Table 17 Ranking of the top 20 variables in the classification of environments for each ecoregion 

TROPICAL AND 
SUBTROPICAL 
MOIST 
BROADLEAF 
FORESTS 

TEMPERATE 
BROADLEAF 
AND MIXED 
FOREST 

TROPICAL AND 
SUBTROPICAL 
GRASSLANDS, 
SAVANNAS AND 
SHRUBLANDS 

TEMPERATE 
GRASSLANDS, 
SAVANNAS AND 
SHRUBLANDS 

MONTANE 
GRASSLANDS 
AND 
SHRUBLANDS 

MEDITERRANEAN 
FORESTS, 
WOODLANDS AND 
SCRUB 

DESERTS AND 
XERIC 
SHRUBLANDS 

BioClim34 BioClim34 BioClim35 BioClim04 BioClim08 BioClim34 BioClim32 

BioClim18 BioClim15 BioClim29 BioClim28 BioClim28 BioClim31 BioClim29 

BioClim30 BioClim21 BioClim31 BioClim34 BioClim34 BioClim28 BioClim24 

BioClim35 BioClim14 BioClim28 BioClim08 BioClim24 BioClim35 BioClim20 

BioClim33 BioClim08 BioClim02 BioClim31 BioClim21 BioClim22 BioClim08 

BioClim15 BioClim29 BioClim32 BioClim10 BioClim14 BioClim33 BioClim26 

BioClim03 BioClim28 BioClim34 BioClim26 BioClim01 BioClim29 BioClim34 

BioClim04 BioClim23 BioClim27 BioClim22 BioClim10 BioClim08 BioClim31 

BioClim23 BioClim31 BioClim23 BioClim29 BioClim11 BioClim27 BioClim09 

BioClim13 BioClim24 BioClim20 BioClim09 BioClim23 BioClim02 BioClim35 

BioClim16 BioClim35 BioClim08 BioClim20 BioClim30 BioClim20 BioClim10 

BioClim11 BioClim30 BioClim22 BioClim27 BioClim03 BioClim26 BioClim22 

BioClim09 BioClim13 BioClim13 BioClim32 BioClim26 BioClim15 BioClim01 

BioClim31 BioClim09 BioClim15 BioClim15 BioClim07 BioClim32 BioClim15 

BioClim27 BioClim06 BioClim06 BioClim07 BioClim06 BioClim09 BioClim28 

BioClim05 BioClim10 BioClim09 BioClim23 BioClim27 BioClim19 BioClim11 

BioClim25 BioClim26 BioClim10 BioClim02 BioClim15 BioClim04 BioClim05 

BioClim01 BioClim03 BioClim25 BioClim24 BioClim16 BioClim03 BioClim25 

BioClim19 BioClim16 BioClim24 BioClim17 BioClim02 BioClim25 BioClim04 

BioClim08 BioClim01 BioClim05 BioClim01 BioClim04 BioClim30 BioClim21 

 

3.6 Novel environments 

3.6.1 ECOREGION MAPS 

The following figures display the value of the largest output value from the ANN classifiers for the 
ecoregions, irrespective of the mapped class. High values indicate a high correspondence with an ecological 
environment that is now present in Australia as inferred by the classifications. Moderate values suggest 
environments that are compatible with existing ecological environments but not well distinguished, as is 
expected in ecotones. Low values indicate environments that are unlike any of the ecoregions as they exist 
now in Australia or where several classes overlap. 
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Figure 23 Map of the maximum output value of the ecoregion ANN classifier in the baseline climate 

 

 

Figure 24 Map of the maximum output value of the ecoregion ANN classifier in the medium scenario 2070 climate 
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Figure 25 Map of the maximum output value of the ecoregion ANN classifier in the high scenario 2070 climate 

 

3.6.2 MVG MAPS 

The following figures (Figures 26, 27 and 28) display the value of the largest output value from the ANN 
classifiers for the MVGs, irrespective of the mapped class. High values indicate a high correspondence with 
an ecological environment that is now present in Australia as inferred by the MVG classifications. Moderate 
values suggest environments that are compatible with existing MVG environments, but two or more classes 
are not well distinguished, as is expected in ecotones. Low values indicate environments that are unlike any 
of the MVG environments as they exist now in Australia as defined by the classification, or the classification 
confusion is high. Substantial areas with low to moderate values in the baseline climate reflect confusion or 
uncertainty of the classifier rather than novel environments, and this must be considered when interpreting 
the results for the climate change scenarios.  
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Figure 26 Map of the maximum output value of the MVG ANN classifier in the baseline climate 

 

Figure 27 Map of the maximum output value of the MVG ANN classifier in the medium scenario 2070 climate 
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Figure 28 Map of the maximum output value of the MVG ANN classifier in the high scenario 2070 climate 
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4 Discussion 

4.1 The classifiers 

The ability of our approach to classify the environments of continent-wide ecoregions or vegetation is 
partly dependent on the accuracy and spatial resolution of the mapped data, both the ecological classes 
and the environmental data. But it is especially dependent on the characteristics of the biological 
classification, especially the degree to which it represents ecological classes that are the result of, and thus 
correlate with, abiotic conditions. The ecoregions and major vegetation groups differ in this regard, 
although both provide insights about the impacts of future climate change. 

4.1.1 ECOREGIONS 

The ecoregions we use were defined as very broad, global biomes. As such they represent vegetation and 
ecosystem structure and, to some degree, function that is controlled by climate, independent of taxonomic 
composition. For example, Amazonian rainforest has little taxonomic overlap with Australian or Southeast 
Asian rainforest, but they have a similar ecological structure and function due to similar climates. 

Ranking of climatic variables for the individual ecoregions shows that the BioClim variables that relate to 
the seasonality of rainfall (e.g. Mean Moisture Index of Warmest Quarter and Mean Moisture Index of 
Coldest Quarter) are often important. This is not surprising, given the well-known ecological importance of 
dominant summer rainfall vs. winter rainfall in Australia.  

Because this map classification is so broad and primarily dependent on climate, our classification of these 
environments is very accurate, despite possible spatial errors in mapping the classes and the climates. We 
have high confidence in the results from the ecoregion classification because it is quite general from an 
ecological perspective and distinguishes the climatic environments very well. 

4.1.2 MAJOR VEGETATION GROUPS 

The 23 MVGs are related to climate but are also expected to be correlated with topographic and edaphic 
variables since the spatial scale (grain) of their distributions is small compared with the much broader 
ecoregions. Consequently, we included the few additional variables available to us that describe spatial 
patterns in soils and topography. The variable rankings for the individual classifications suggest that the 
topographic variables are rarely important in the classifications, the exception being mangroves. In 
contrast, soil variables are more often important, especially the saturated hydraulic conductivity of the A 
horizon. This variable is a good quantitative measure of the broad soil types: clay, loam and sand. Soil depth 
and water-holding capacity are often important as well. All three of these soil variables relate to water 
availability for plants, implying that the distributions of MVGs, as opposed to climatically controlled 
ecoregions, is largely controlled by water – though rainfall amount and seasonality – interacting with soil 
properties.  

This classification is much less able to separate the MVG environments than was possible for the 
ecoregions. There are numerous reasons for this. A fundamental problem is that some of the MVGs are not 
well-defined for our purposes and occur in more than one climatic zone and ecoregion; Eucalypt woodlands 
(MVG 5) is a prime example. Since Eucalypt woodlands were mapped by NVIS in such a broad range of 
environments, their environments overlap with other MVGs and this increases the uncertainty or 
‘confusion’ of the classification. This illustrates that the effectiveness of our approach depends on the 
quality of the mapped vegetation classification as much as on the quality of the mapped environments.  
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Another cause of reduced classification accuracy for the MVGs is their complex and detailed spatial pattern 
that results in large areas where MVGs are adjacent. Consequently. the training and test sets include many 
ecotonal areas where it is difficult or impossible to distinguish environments that are solely representative 
of one class over another. More accurate and detailed environmental mapping with more topographic and 
edaphic variables could partially increase classification accuracy. But there will always be unpredictable, 
contingent factors that limit our capacity to completely classify distinct environments for any classification 
of vegetation. 

Given the inherent difficulties in separating environments that are appropriate to many vegetation classes 
at a fine scale over an entire continent, we conclude that our classification of MVGs provides a useful 
generalisation of the environments that are characteristic of these mapped vegetation classes. 

4.2 Dissimilarity 

Dissimilarity is an important result from our method since it indicates the degree of biotically scaled 
environmental change, interpreted as stress on existing vegetation (ecosystems) in the climate change 
scenarios. When the classification can separate environmental classes very well, as is the case with the 
ecoregions, dissimilarity under climate change scenarios is a straightforward measure of stress that implies 
impact on the existing ecosystems. When there is more uncertainty in the classification, as is the case for 
the MVGs, it is useful to consider the change in dissimilarity relative to that in the baseline climate.  

A disadvantage of our vector-angle dissimilarity metric is that it does not account for the length of the 
classification vector, which is a better measure of the certainty of the classification. For example, a vector 
with a value of 0.2 for the mapped class and 0.0 for all other classes has a dissimilarity of 0.0 but the 
suitability for the mapped class is low. In other words, this location has an environment that is within the 
range of environments that is classified as this class but it is on the outer bounds of the frequency 
distribution. It is also affected by confusion in the original classification.  

The measure of biotically scaled environmental stress using the Bray–Curtis metric has the advantage of 
including the vector length as well as the angle. It is also completely independent of any confusion in the 
original classification, hence it is a direct measure of predicted environmental change.  

4.3 Novel environments 

This application of the ANN classification outputs is intended to provide a complementary metric to 
dissimilarity that does consider an aspect of vector length. It appears to be useful when the classification is 
able to distinguish classes very well, as is the case for the ecoregions. It is probably of less value when the 
classes are less separable, as is the case for the MVGs at indicating novel environments.  

Hilbert and Ostendorf (2001) developed a ‘confidence’ index (Cf) using all outputs from the model at each 
location that can be linearly related to the probability of observing a mapped class given any particular 
environment. This index combines the absolute environmental suitability from the output node 
corresponding to vegetation class (Of) with the relative suitability given by Of divided by the sum of all 
outputs of the vector. Thus, the index is the product of the absolute and relative suitability: 
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where i is the class index, f is the index of the mapped vegetation class and n is the number of classes. This 
metric has the range [0,1]. It may be preferable to using the largest output value, as we have done here, to 
indicate novel environments. Future research should consider a metric that is the product of confidence (C) 
and dissimilarity (D) that may be a superior measure of climate change–induced stress that includes both 
vector angle and vector length. 
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4.4 Ranked variable importance 

Ranking the importance of the environmental variables for the classification of each environmental class 
can provide additional ecological understanding that the multivariate classifications do not provide in our 
case. ANN classifiers are not analytical. They are known to be superior at identifying patterns in many 
circumstances than analytical, statistical methods but they generally do not explain the patterns, although 
some ANN software have implemented algorithms that attempt to do so, such as the Tiberius code we used 
here. Provisionally, the rankings appear to be consistent with broad ecological expectations but further 
analysis is necessary before we can draw firm conclusions. It would be particularly useful to compare these 
rankings with analogous results from a statistical approach such as generalised additive models (Hastie and 
Tibshirani 1990). Hilbert and Ostendorf (2001) showed that ANNs are superior classifiers to both maximum 
likelihood and generalised additive models in a similar application, but they did not compare their abilities 
to rank variable importance.  

4.5 Changing environmental variables that are not included in our 
modelling  

The models we use to infer biotically scaled environmental change are empirical and rely on correlations 
between the spatial distributions of biota and environments in the present landscape. Consequently our 
models’ scenario-based projections of altered, biotically scaled environments are partial – they represent 
only the impact of temporal and spatial changes in climate, and they do that within the limitations of the 
biotic, climatic and other environmental variables used to fit the models. In this sense, the modelled 
environmental stress is one component of the total environmental change that species may experience. 
Additional environmental change may result from changes in atmospheric CO2 concentration, climate 
variables not included in model fitting or available in climate projections, altered disturbance regimes (e.g. 
fire, flood), soil and landscape hydrological processes (which are non-linear responses to changes in 
patterns of rainfall, evaporation and vegetation), and biotic environment (an ecosystem feedback resulting 
from the impact on nutrients, moisture, shading, CO2, food, habitat, etc. of other species that may be 
positive or negative). This is the case for all empirical models of potential future climate change impacts, 
and one of the reasons we avoid making direct inferences about specific, future biodiversity change directly 
from the model projections.  

These additional changes in the environment will vary spatially, and species and ecosystems will respond 
differentially in unknown ways. In some situations some of these factors may mitigate ecological responses 
to the factors that are included in the modelling; however, it is more likely that these factors will add to 
environmental ‘stress’ and lead to greater ecological change. These factors would also add to the detail of 
the spatial patterning of ecological change. One of the main conclusions in this study is drawn from the 
existence of spatial patterning at multiple scales but not the specific locations of areas of high or low levels 
of environmental change. 

One could make estimates about possible ecological responses to some of these other factors and modify 
the interpretation of our modelling in a post-hoc fashion. But for the most part we have avoided doing so in 
this report for three reasons. First, it is essential that we present the direct results of our analysis clearly. 
Secondly, the spatial and temporal pattern and/or impacts of these additional variables on broadscale 
biodiversity, as we use here, are largely unknown. Finally, our analyses include the primary, direct variables 
that are well known to influence biodiversity patterns at large scales. 

As an example of a variable with poorly known effects, the possible ecological impacts due to increasing 
atmospheric CO2 concentration cannot be assessed directly by our modelling methods. But a post-hoc 
inclusion of CO2 effects in our analyses is not possible at this time because there is not enough known and 
no models exist that project broadscale, spatial biodiversity responses to CO2 at the resolution or extent of 
our models. Research on how elevated atmospheric CO2 will affect biodiversity, from the leaf to ecosystem 
scale, has been ongoing for at least forty years, using a variety of methods, but there has been little work 
done in Australia compared to the temperate regions of the northern hemisphere. While there are broad 
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generalities at the leaf level – such as increased water use efficiency of photosynthesis – how or whether 
this translates into plant growth, much less community dynamics or ecosystem structure, is far from 
known, certainly not for the great diversity of Australian ecological communities, ecosystems or 
environments.  

While change in atmospheric CO2 is non-spatial, unlike the rest of our variables, it could have varying spatial 
effects due to differential impacts depending on local species composition, water and nutrient availability, 
or ecosystem processes that are largely unknown or stochastic. Furthermore, ecological responses – 
especially at the community and ecosystem level – to elevated CO2 coupled with the large changes in mean 
annual temperature and precipitation in the climate scenarios we used have not been studied.  

Our analyses represent a major advance by providing continental analyses based on the best available data 
with this scope, including the major controls on biodiversity patterns such as climate, soil and terrain 
variables. Future analyses of the sort we provide here, that also include variables such as CO2 
concentration, will only be possible once models of community- or ecosystem-level responses at fine 
spatial and continental breadth have been developed. From a conservation or policy perspective, it is likely 
that changes in the environmental variables not included in our analyses will augment or exacerbate the 
degree of biotically scaled change we predict here.  

4.6 General issues and conclusions 

All modelling methods have particular strengths and weaknesses and the choice of a particular method is 
contingent on a number of factors, including the specific objectives of the study, the level of understanding 
of the particular system, availability of data, and issues related to the spatial and temporal scale. While 
empirical or correlative vegetation models have been summarily dismissed by a few authors (for example, 
Woodward and Beerling 1997), they clearly have been and will continue to be very useful in a number of 
contexts, including global climate change. 

Careful application of empirical methods, including ANNs and other techniques, provides the possibility to 
make very useful contributions to the understanding and conservation of ecosystems at broad scales in 
relation to climate change. Even where systems are well understood mechanistically and detailed 
biogeographic data are available, empirical vegetation modelling is a powerful tool for many applications. 

The nature of the vegetation classification is very important in our method. Classification based on non-
floristic attributes, such as the vegetation’s structural and physiognomic characteristics, has the advantage 
that the categories reflect environmental constraints and are consequently likely to remain as meaningful 
map units when the model is applied to past or future climates. In other words, the method can transform 
climatic change into ecologically meaningful (biotically scaled) change to the degree that the mapped 
vegetation classes reflect climatic and other environmental constraints. The success of this approach in the 
Wet Tropics of north-east Queensland is due, in part, to the highly developed typology used in the mapping 
and its foundation on forest structure and environmental types. The differences between our classifications 
of the ecoregions and MVGs illustrate the importance of the vegetation classification.  

The ecoregions are a very broad classification of global biomes where the general structural and functional 
characteristics of the classes are controlled by climate and are independent of species composition. For 
example, savannas in South America, Africa and Australia share few species but have similar structures and 
dynamics due to their shared climates. Consequently, our classification of these environments is quite good 
and our confidence in projecting change due to climate change is high.  

Our classification of the environments of MVGs is less certain. The classifier is less able to distinguish all 
classes (lower Kappa and accuracy), mean dissimilarities for some classes are high, and the largest output 
value for many locations is relatively low in the baseline climate. But the classes vary considerably in our 
ability to separate their environments. One example of a poor classification is Eucalypt woodlands (MVG 5), 
with an accuracy of 50.6 and Kappa of 0.44. On the other hand, some MVG environments are distinguished 
well. For example, Tropical eucalypt woodlands/grasslands environments were distinguished with an 
accuracy of 93.1 and Kappa of 0.93. Despite the low ability of the classification to distinguish some classes, 
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due to limitations in the classification of the vegetation, the results are useful in assessing spatial patterns 
of climate change impacts. However, inherent uncertainty in the baseline climate must be considered when 
interpreting the results under climate change.  

Overall, it appears that this is a useful approach that can be applied at a continental scale to assess climate 
change impacts in a general way (shifts in biotically meaningful environments resulting in stress to existing 
ecosystems). A complete analysis of the large amount of data generated by this modelling is beyond the 
scope of the current project, and more research should be aimed at maximising use of the richness of the 
information from this approach. 

While the model is not dynamic and cannot represent the spatio-temporal dynamics of vegetation in 
response to climate change, we have shown that the results can be analysed effectively to identify the 
vegetation classes and landscape locations that are likely to be most affected in the medium-term 
(decades) without any major changes in the extent or distribution of vegetation classes. This is the 
information that is needed most critically now to guide conservationists and land managers who need to 
monitor change and develop strategies to cope with the ecological change brought about by rapid 
modification of climate. 
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Appendix A  Samples sizes for training and testing 
the artificial neural networks 

This appendix provides tables that list the sample sizes of the total continental data that were used to train 
the artificial neural networks (ANNs) described in the main body of this report. In all cases the numbers in 
the tables refer to the number of training patterns, each of which represents data for a 4 km2 location.  

Table A.1 Sample sizes of the training and test data for simultaneously classifying ecoregions 

BIOME 

NUMBER OF TRAINING 
PATTERNS IN THE FULL 

DATASET 

NUMBER OF TRAINING 
PATTERNS IN TRAINING 

DATASET 

NUMBER OF TRAINING 
PATTERNS IN THE  

TEST DATASET 
Tropical and subtropical moist broadleaf forests 6 918 1 476 369 
Temperate broadleaf and mixed forest 137 186 2 691 673 

Tropical and subtropical grasslands, savannas and 
shrublands 

452 678 2 690 673 

Temperate grasslands, savannas and shrublands 134 947 2 628 657 
Montane grasslands and shrublands 2 950 2 360 590 
Mediterranean forests, woodlands and scrub 190 268 2 638 659 
Deserts and xeric shrublands 789 622 2 662 665 

Total 1 714 569 17 145 4 286 
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Table A.2 Training data for simultaneously classifying all 23 major vegetation groups 

MAJOR VEGETATION GROUP 

NUMBER OF 
TRAINING 
PATTERNS IN 
FULL DATASET 

NUMBER OF 
PATTERNS IN 
TRAINING 
DATASET 

NUMBER OF 
PATTERNS IN  
TEST DATASET 

Rainforest and vine thickets 11 228 2 998 750 

Eucalypt tall open forest 9 967 2 854 714 

Eucalypt open forest 97 439 4 780 1 195 

Eucalypt low open forest 1 224 1 002 251 

Eucalypt woodlands 316 569 4 789 1 197 

Acacia forests and woodlands 113 142 4 743 1 186 

Callitris forests and woodlands 9 069 2 733 683 

Casuarina forests and woodlands 37 880 4 702 1 176 

Melaleuca forests and woodlands 19 988 3 974 994 

Other forests and woodlands 16 924 3 685 921 

Eucalypt open woodlands 107 745 4 630 1 158 

Tropical eucalypt woodlands / grasslands 24 103 4 482 1 121 

Acacia open woodlands 74 252 4 671 1 168 

Mallee woodlands and shrublands 94 099 4 722 1 181 

Low closed forest and tall closed shrubland 5 588 2 166 542 

Acacia shrublands 196 376 4 629 1 157 

Other shrublands 34 398 4 821 1 205 

Heath 1 593 1 154 289 

Tussock grasslands 125 779 4 740 1 185 

Hummock grasslands 299 900 4 679 1 170 

Other grasslands, herblands, sedgelands and rushlands  12 326 3 174 793 

Chenopod shrublands, samphire shrubs and forblands 103 568 4 672 1 168 

Mangroves 1 412 1 160 290 

Total 1 714 569 85 963 21 491 

 

Table A.3 Sample sizes of the training data for ranking environmental influences by ecoregion 

ECOREGION 

NEURAL NETWORK SAMPLE 
TROPICAL AND 

SUBTROPICAL MOIST 
BROADLEAF FORESTS 

TEMPERATE 
BROADLEAF 
AND MIXED 

FOREST 

TROPICAL AND 
SUBTROPICAL 
GRASSLANDS, 

SAVANNAS AND 
SHRUBLANDS 

TEMPERATE 
GRASSLANDS, 

SAVANNAS AND 
SHRUBLANDS 

MONTANE 
GRASSLANDS 

AND 
SHRUBLANDS 

MEDITERRANEAN 
FORESTS, 

WOODLANDS 
AND SCRUB 

DESERTS  
AND XERIC 

SHRUBLANDS 

Ecoregion training set               
Tropical and subtropical 
moist broadleaf forests 5 905 2 974 2 986 2 949 2 349 2 903 2 980 

Temperate broadleaf and 
mixed forest 951 17 913 3 019 2 996 2 327 3 059 3 036 

Tropical and subtropical 
grasslands, savannas and 
shrublands 

1 035 2 996 17 703 2 949 2 346 3 003 3 056 

Temperate grasslands, 
savannas and shrublands 959 2 983 2 935 17 731 2 237 2 982 2 888 

Montane grasslands and 
shrublands 1 021 2 946 2 946 2 946 2 946 2 946 2 946 

Mediterranean forests, 
woodlands and scrub 1 008 2 989 2 933 2 891 2 231 17 676 2 973 

Deserts and xeric 
shrublands 959 2 923 2 972 2 902 2 298 2 993 17 777 

Total 11 838 35 724 35 494 35 364 16 734 35 562 35 656 
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Table A.4 Training data for ranking environmental influences by MVG 

NEURAL NETWORK MVG 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

TRAINING SAMPLE                                               
Rainforest and vine 
thickets 11 390 442 1 200 54 1 293 1 284 365 1 255 886 797 1 285 1 085 1 295 1 247 258 1 241 1 261 67 1 174 1 253 556 1 242 93 

Eucalypt tall open forest 535 10 042 1 253 45 1 307 1 217 443 1 234 887 820 1 300 1 075 1 245 1 288 276 1 283 1 295 74 1 268 1 289 566 1 226 69 

Eucalypt open forest 548 467 27 598 55 1 234 1 243 366 1 263 898 762 1 262 1 057 1 267 1 185 273 1 220 1 200 71 1 232 1 258 565 1 247 81 

Eucalypt low open forest 489 440 1 253 1 253 1 253 1 253 429 1 253 915 736 1 253 1 099 1 253 1 253 254 1 253 1 253 94 1 253 1 253 590 1 253 76 

Eucalypt woodlands 539 470 1 284 60 27 560 1 254 451 1 236 899 703 1 202 1 120 1 252 1 209 249 1 188 1 268 58 1 227 1 260 576 1 263 67 
Acacia forests and 
woodlands 502 457 1 299 53 1 268 27 323 366 1 165 922 784 1 287 1 138 1 245 1 283 252 1 241 1 241 71 1 209 1 210 599 1 237 76 

Callitris forests and 
woodlands 524 496 1 220 68 1 270 1 236 9 078 1 329 872 766 1 240 1 078 1 239 1 271 262 1 222 1 229 71 1 253 1 276 533 1 294 100 

Casuarina forests and 
woodlands 478 449 1 260 48 1 286 1 227 416 27 523 880 720 1 261 1 068 1 242 1 285 254 1 280 1 239 81 1 326 1 276 607 1 274 71 

Melaleuca forests and 
woodlands 522 457 1 243 68 1 321 1 258 394 1 188 20 097 758 1 245 1 113 1 292 1 254 243 1 229 1 246 61 1 254 1 273 591 1 229 73 

Other forests and 
woodlands 495 460 1 229 59 1 230 1 240 419 1 250 953 17 023 1 215 1 128 1 230 1 284 255 1 238 1 250 82 1 267 1 243 584 1 193 71 

Eucalypt open woodlands 521 455 1 247 45 1 200 1 298 447 1 241 899 790 27 506 1 106 1 228 1 232 270 1 342 1 199 57 1 217 1 221 550 1 234 74 
Tropical eucalypt 
woodlands / grasslands 498 455 1 297 58 1 197 1 244 416 1 249 837 763 1 261 24 165 1 272 1 223  261 1 189 1 242 82 1 259 1 277 569 1 258 63 

Acacia open woodlands 492 432 1 245 66 1 198 1 204 431 1 243 922 741 1 226 1 102 27 481 1 300 256 1 261 1 181 80 1 209 1 242 593 1 279 71 
Mallee woodlands and 
shrublands 526 467 1 254 63 1 246 1 220 417 1 206 931 758 1 218 1 071 1 270 27 642 240 1 134 1 235 70 1 239 1 268 577 1 243 73 

Low closed forest and tall 
closed shrubland 487 446 1 205 60 1 273 1 237 418 1 203 918 754 1 261 1 129 1 257 1 234 5 673 1 283 1 263 73 1 258 1 264 551 1 262 62 

Acacia shrublands 530 466 1 187 45 1 237 1 235 411 1 262 988 716 1 204 1 128 1 250 1 252 278 27 425 1 253 65 1 230 1 228 580 1 270 79 

Other shrublands 487 450 1 190 49 1 275 1 152 409 1 294 880 790 1 275 1 072 1 265 1 332 281 1 258 27 582 86 1 305 1 296 624 1 248 82 

Heath 493 426 1 256 62 1 234 1 277 409 1 249 916 816 1 245 1 095 1 252 1 249 269 1 222 1 260 1 669 1 238 1 283 521 1 251 77 

Tussock grasslands 500 460 1 256 62 1 246 1 230 349 1 299 880 763 1 245 1 193 1 247 1 240 258 1 292 1 227 92 27 532 1 264 573 1 258 69 

Hummock grasslands 500 472 1 279 57 1 188 1 228 455 1 269 930 778 1 325 1 031 1 209 1 281 273 1 291 1 279 71 1 181 27 349 566 1 283 68 
Other grasslands, 
herblands, sedgelands and 
rushlands  

512 445 1 274 54 1 255 1 255 423 1 258 927 770 1 251 1 045 1 276 1 238 263 1 270 1 229 72 1 257 1 219 12 491 1 297 71 

Chenopod shrublands, 
samphire shrubs and 
forblands 

502 489 1 228 56 1 255 1 272 422 1 215 882 796 1 331 1 045 1 232 1 259 275 1 333 1 303 71 1 149 1 216 549 27 509 75 

Mangroves 493 466 1 273 51 1 243 1 242 422 1 252 904 805 1 315 1 096 1 310 1 227 241 1 265 1 265 77 1 239 1 247 596 1 266 1 650 

Total 22 563 20 109 55 030 2 491 55 069 54 629 18 156 54 936 40 023 33 909 55 213 48 239 55 109 55 268 11 414 54 960 55 000 3 295 54 776 54 965 25 107 55 116 3 291 
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