Journal Articles

Examples of publications on various waste innovation and circular economy areas are listed below.

Value recovery from spent batteries, electronic wastes and other post-consumer wastes

Lithium battery recycling in Australia – Current status and opportunities for developing a new industry, King S, Boxall NJ, Bhatt AI (2018).

Urban mining of lithium-ion batteries in Australia: Current state and future trends. Boxall NJ, King S, Cheng KY, Gumulya Y, Bruckard W, Kaksonen AH. Minerals Engineering 128: 45-55 (2018).

Application of indirect non-contact bioleaching for extracting metals from waste lithium-ion batteries. Boxall NJ, Cheng KY, Bruckard W, Kaksonen AH. Journal of Hazardous Materials 360: 504-511 (2018).

Multistage leaching of metals from spent lithium ion battery waste using electrochemically generated acidic lixiviant. Boxall NJ, Adamek N Cheng KY, Haque N, Bruckard W, Kaksonen AH. Waste Management 74: 435-445 (2018).

The use of pyrite as a source of lixiviant in the bioleaching of electronic waste. Bryan CG, Watkin EL, McCredden TJ, Wong ZR, Harrison STL, Kaksonen AH. Hydrometallurgy 152: 33-43 (2015).

Selective precipitation of metals from synthetic spent refinery catalyst leach liquor with biogenic H2S produced in a lactate-fed anaerobic baffled reactor. Cibati A, Cheng K Y, Morris C, Ginige MP, Sahinkaya E, Pagnanelli F, Kaksonen AH. Hydrometallurgy 139: 154-161 (2013).

Resource recovery from mine wastes

Towards circular economy in mining: Opportunities and bottlenecks for tailings valorization. Kinnunen PH-M, Kaksonen AH. Journal of Cleaner Production 228: 153-160 (2019).

Pilot scale bioleaching of metals from pyritic ashes. Vuorenmaa E, Mäkinen J, Korhonen T, Neitola R, Kaksonen A. Solid State Phenomena 262: 147-150 (2017).

Solid phase analyses of chemically and biologically leached copper smelter slag. Kaksonen AH, Särkijärvi S, Puhakka JA, Peuraniemi E, Junnikkala S, Tuovinen OH. Minerals Engineering 106: 97-101 (2017).

Metal biorecovery in acid solutions from a smelter slag. Kaksonen AH, Särkijärvi S, Peuraniemi E, Junnikkala S, Puhakka JA, Tuovinen OH. Hydrometallurgy 168: 135-140 (2017).

Chemical and bacterial leaching of metals from a smelter slag in acid solutions. Kaksonen AH, Särkijärvi A, Puhakka JA, Peuraniemi E, Junnikkala S, Tuovinen OH. Hydrometallurgy 159: 46-53 (2016).

Optimisation of Acid Bioleaching of Metals from Pyritic Ashes. Vestola EA, Mäkinen J, Korhonen T, Neitola R, Kaksonen AH. Advanced Materials research 825, 520-523 (2013).

Bioleaching and recovery of metals from final slag waste of the copper smelting industry. Kaksonen AH, Lavonen L, Kuusenaho M, Kolli A, Närhi H, Vestola E, Puhakka JA, Tuovinen OH. Minerals Engineering 24: 1113-1121 (2011).

Acid bioleaching of solid waste materials from copper, steel and recycling industries. Vestola EA, Kuusenaho MK, Närhi HM, Tuovinen OH, Puhakka JA, Plumb JJ, Kaksonen AH. Hydrometallurgy 103(1-4): 74-79 (2010).

Treatment and value recovery from alumina industry organic wastes

Kinetics of oxalate degradation in aerated packed-bed biofilm reactors under nitrogen supplemented and deficient conditions. Weerasinghe Mohottige TN, Kaksonen AH, Cheng KY, Sarukkalige R. Ginige MP. Journal of Cleaner Production 211: 270-280 (2018).

Influences of pH and organic carbon on oxalate removal by alkaliphilic biofilms acclimatized to nitrogen-deficient and supplemented conditions. Mohottige TNW, Cheng KY, Kaksonen AH, Sarukkalige R, Ginige MP. Journal of Cleaner Production 187: 699-707 (2018).

Rapid start-up of a bioelectrochemical system under alkaline and saline conditions for efficient oxalate removal. Weerasinghe Mohottige TN, Ginige MP, Kaksonen AH, Sarukkalige R, Cheng KY. Bioresource Technology 250: 317-327 (2018).

Oxalate degradation by alkaliphilic biofilms acclimatised to nitrogen-supplemented and nitrogen-deficient conditions. Weerasinghe Mohottige TN, Cheng KY. Kaksonen AH, Sarukkalige R, Ginige MP. Journal of Chemical Technology and Biotechnology 93: 744-753 (2017).

Bioelectrochemical oxidation of organics by alkali-halotolerant anodophilic biofilm under nitrogen-deficient, alkaline and saline conditions. Mohottige TNW, Ginige MP, Kaksonen AH, Sarukkalige R, Cheng KY. Bioresource Technology 245: 890-898 Part A (2017).

Characterisation of a novel genus of oxalate-degrading beta-Proteobacteria isolated from a full-scale bioreactor treating Bayer liquor organic wastes. McSweeney NJ, Franzmann PD, Tilbury AL, Nyeboer HJ, McKinnon AJ, Sutton DC, Kaksonen AH. Advanced Materials Research 825, 79-83 (2013).

Molecular characterisation of the microbial community of a full-scale bioreactor treating Bayer liquor organic waste. McSweeney NJ, Tilbury AL, Nyeboer HJ, McKinnon AJ, Sutton DC, Franzmann PD, Kaksonen AH. Minerals Engineering 24: 1094-1099 (2011).

Comparison of microbial communities in pilot-scale bioreactors treating Bayer liquor organic wastes. McSweeney NJ, Plumb JJ, Tilbury AL, Nyeboer HJ, McKinnon AJ, Kaksonen AH, Franzmann PD, Sutton DC. Biodegradation 22: 397-407 (2011).

Risks from wastes

A new method for ranking potential hazards and risks from wastes. Cheng KY, Wong PY, Whitwell C, Innes L-l, Kaksonen AH. Journal of Hazardous Materials 365: 778-788 (2019).

Water recycling

Risks of perfluoroalkyl and polyfluoroalkyl substances (PFAS) for sustainable water recycling via aquifers. Page D, Vanderzalm J, Kumar A, Cheng KY, Kaksonen AH, Simpson S. Water 11: 1737: doi:10.3390/w11081737 (2019).

Water recycling via aquifers for sustainable urban water quality management: current status, challenges and opportunities. Bekele E, Page D, Vanderzalm J, Kaksonen A, Gonzalez D. Water 10(4): 457 (2018).

Biofouling potential and material reactivity in a simulated water distribution network supplied with stormwater recycled via managed aquifer recharge. Gonzalez D , Tjandraatmadja G, Barry K, Vanderzalm J, Kaksonen AH, Dillon P, Puzon GJ, Sidhu J, Wylie J, Goodman N, Low J. Water Research 105(15): 110-118 (2016).

Bacterial community and groundwater quality changes in an anoxic aquifer during groundwater recharge with oxic treated wastewater. Ginige MP, Kaksonen AH, Morris C, Shackelton M, Patterson B..FEMS microbiology Ecology 85: 553-567 (2013).

Phosphorus recovery

Improvement of carbon usage for phosphorus recovery in EBPR-r and the shift of microbial community. Wong P, Cheng KY, Krishna B, Kaksonen AH, Sutton D, Ginige MP. Journal of Environmental Management 218: 569-578 (2018).

The ability of PAOs to conserve their storage-driven phosphorus uptake activities during prolonged aerobic carbon starvation conditions. Wong P, Ginige MP, Kaksonen AH, Sutton DC, Cheng KY. Journal of Water Process Engineering 23: 320-326 (2018).

Simultaneous phosphorus uptake and denitrification by EBPR-r biofilm under aerobic condition: Effect of dissolved oxygen. Wong PY, Ginige MP, Kaksonen AH, Cord-Ruwisch R, Sutton DC, Cheng KY. Water Science & Technology 72(7): 1147-1154 (2015).

A Novel Post Denitrification Configuration for Phosphorous Recovery using Denitrifying Polyphosphate Accumulating Organisms. Wong PY, Cheng KY, Kaksonen AH, Sutton DC, Ginige MP. Water Research 47:6488-6495 (2013).

Energy recovery

Integrating microbial electrochemical technologies with anaerobic digestion for waste treatment: possibilities and perspectives. Cheng KY, Kaksonen AH; In Wong J. (ed.) Current Developments in Biotechnology and Bioengineering: Solid Waste Management. Elsevier. Pp. 191-221 (2017).

Municipal wastewater treatment

Fluidized bed reactor biotechnology for multiple environmental engineering solutions. Özkaya B, Kaksonen AH, Sahinkaya E, Puhakka JA. Water Research 150: 452-465 (2019).

Ammonium-oxidizing bacteria facilitate aerobic degradation of sulfanilic acid in activated sludge. Chen G, Ginige MP, Kaksonen AH, Cheng KY. Water Science and Technology 70(6): 1122-1128 (2014).

Resource Recovery from Wastewater: A Research Agenda. Burn S, Muster T, Kaksonen A, Tjandraatmadja G. Water Environment Research Foundation, USA (2014).

Ammonia recycling enables sustainable operation of bioelectrochemical systems. Cheng K Y, Kaksonen AH, Cord-Ruwisch R. Bioresource Technology 143: 25-31 (2013).

Biological phosphorous and nitrogen removal in sequencing batch reactors: Effects of cycle length, dissolved oxygen concentration and influent particulate matter. Ginige MP, Kayaalp AS, Cheng KY, Wylie J, Kaksonen AH. Water Science and Technology 68: 982-990 (2013).

Ano-cathodophilic biofilm catalyzes both anodic carbon oxidation and cathodic denitrification. Cheng KY, Ginige MP, Kaksonen AH. Environmental Science & Technology 46 (18): 10372-10378 (2012).

Textile wastewater treatment

Ammonium-oxidizing bacteria facilitate aerobic degradation of sulfanilic acid in activated sludge. Chen G, Ginige MP, Kaksonen AH, Cheng KY. Water Science and Technology 70(6): 1122-1128 (2014).

Aerobic degradation of sulfanilic acid using activated sludge. Chen G, Cheng KY, Ginige M, Kaksonen AH. Water Research 46: 145-151 (2012).

Mine and metallurgical wastewater treatment

Biotreatment of As-containing acid mine drainage using sulfate reducing granules in an upflow anaerobic sludge blanket reactor. Sahinkaya E, Yurtsever A, Toker Y, Elcik H, Cakmaci M, Kaksonen AH. Minerals Engineering 75: 133-139 (2015).

Reactivation of carbon exhausted sulfidogenic bioreactor by fractionated sweetmeat waste dosing: the role of neutralizing substance and nitrogen supplement. Das BD, Kaksonen AH, Bhattacharya J. Environmental Technology & Innovation 1-2: 35-45 (2014).

Sequential in situ hydrotalcite precipitation and biological denitrification for the treatment of high-nitrate industrial effluent. Cheng KY, Kaksonen AH, Douglas GB. Bioresource Technology 172: 373-381 (2014).

Biohydrometallurgical iron oxidation and precipitation: Part I − Effect of pH on process performance. Kaksonen AH, Morris C, Rea S, Li J, Wylie J, Usher K, Ginige MP, Cheng KY, Hilario F, du Plessis C. Hydrometallurgy 147-148: 255-263 (2014).

Biohydrometallurgical iron oxidation and precipitation: Part II – Jarosite precipitate characterisation and acid recovery by conversion to hematite. Kaksonen AH, Morris C, Rea S, Li J, Usher K, McDonald RG, Hilario F, Hosken T, Jackson M, du Plessis C. Hydrometallurgy 147-148: 264-272 (2014).

Use of landfill leachate as a carbon source in a sulfidogenic fluidized-bed reactor for the treatment of acid mine drainage. Sahinkaya E, Dursun N, Ozkaya B, Kaksonen AH. Minerals Engineering 48: 56-60 (2013).

Sequential precipitation of Cu and Fe using a three-stage sulfidogenic fluidized-bed reactor system. Ucar D, Bekmezci OK, Kaksonen AH, Sahinkaya E. Minerals Engineering 24: 1100-1105 (2011)

Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor. Bekmezci OK, Ucar D, Kaksonen AH, Sahinkaya E. Journal of Hazardous Materials 189: 670-676 (2011).

Performance of a sulphide-oxidizing, sulphur-producing membrane biofilm reactor treating sulphide-containing bioreactor effluent. Sahinkaya E, Hasar H, Kaksonen AH, Rittmann BE. Environmental Science &Technology 45(9): 4080-4087 (2011).

Sulfidogenic fluidized bed treatment of real acid mine drainage water. Sahinkaya E, Ucar D, Kaksonen AH. Bioresource Technology 102: 683-689 (2011).