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This report summarises theoretical and computational aspects of the sediment transport 

formulation incorporated in MECOSED code. The report is organised as follows. Chapter 1 

gives brief overview of the sediment transport model. Chapter 2 presents governing equations 
for the suspended and bottom sediment transport plus equations for the dissolved and sediment 

attached tracers. Key sediment processes are listed in Chapter 3. Erosion/deposition, 

flocculation, and settling of sediment are described in Chapters 4 and 5. The bottom boundary 

layer formulation is given in Chapter 6. Chapter 7 describes sorption/desorption and decay 

algorithms. Numerical aspects of the model implementation are given in Chapter 8.  
 

 

1 MODEL OVERVIEW  
 

MECOSED is a 1-D vertical model of coastal and estuarine sediment transport. The model is 

intended as an improvement to transport simulation capabilities of a 3-D Environmental 

Modelling System (EMS), developed at CSIRO, Division of Marine Research 

(https://research.csiro.au/cem/). MECOSED simulates vertical transport of particulate, 
dissolved, and sediment-bound tracers in water column and in sediment bed. The complete 

model consists of several modules, including sediment transport module, modules for the 

dissolved and sediment-bound tracers, and the bottom boundary layer module. Sediment 

transport in MECOSED is driven by waves and currents simulated by hydrodynamic and wave 

models. 
 

Sediment transport 

 

The sediment transport module solves advection-diffusion equations of the mass conservation 

for suspended and bottom sediments, taking into account bottom exchanges through the 

resuspension and deposition (fig. 1.1). In a water column suspended particles undergo turbulent 
mixing and settling due to gravity force. Displacement of particles in a sediment bed is driven 

by bioturbation and consolidation. The bioturbation is represented by local diffusion. Empirical 

formulation is used to parameterize velocity of consolidating sediments. Cohesive sediments 

are either eroded or deposited depending on the value of the bottom shear stress. A concept of 

equilibrium sediment distribution is used to parameterise erosion/deposition of non-cohesive 
sediments.  

 

 
 

Fig. 1.1. Key sediment processes. 
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Dissolved transport 

 

The module of the dissolved transport solves advection – diffusion equations of the mass 
conservation of tracers dissolved in water column and in sediment pore water. Transport in 

water column is coupled to processes in pore water through the bioirrigation, water 

entrainment/expulsion during resuspension/deposition events, and through the consolidation of 

sediments expelling pore-water from sediments into the overlaying water. The bioirrigation is 

represented in this model by a local diffusion process. 
  

Sediment-bound tracers 

 

Sediment-bound tracers are analogous to hydrophobic contaminants, e.g. organic chemicals, 

heavy metals or radionuclides that adsorb to fine-grained sediment particles. The model solves 

advection – diffusion equations for the mass conservation of the sediment-bound tracers in 
water column and in sediment bed. Sorption exchange between solid and liquid phases is 

simulated using the concept of the equilibrium distribution. To simulate degradable pollutants, 

the model incorporates first-order decay reaction. 

 

Bottom boundary layer 
 

Bottom friction under combined wave-current flow is estimated using Grant and Madsen (1994) 

model. On a cohesive sediment bed constant physical roughness associated with biogenic bed-

forms is specified. On a non-cohesive sediment bed the total physical roughness is assumed to 

be composed of the skin friction over the sediment grains and the form-drag over the ripples. 
Ripples in a wave-dominated environment are either simulated or specified as the model input 

data. Under combined waves and currents and in a current-dominated flow the bed forms are 

specified as the model input parameters.  

 

Numerical solution 

 
The model governing equations are formulated in a time-varying, sediment thickness and 

optionally water depth adapted coordinate frame. The numerical solution utilises implicit finite 

difference scheme for advective and diffusive terms. Advective terms are approximated using 

upwind finite difference. The governing equations are transformed to a three-diagonal system 

of algebraic equations, which is solved using Thompson’s method.  
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2 TRANSPORT EQUATIONS 
 

MECOSED solves advection-diffusion equations for multiply sediment classes (and for 

dissolved tracers) in both water column and sediment bed. The thickness of the sediment layer 

varies with time due to resuspension/deposition and consolidation of sediments. To maintain 
high vertical resolution near the seabed surface throughout the simulation period, the model 

employs stretched, depth-adjusted numerical grids. This section describes mass balance 

equations and boundary conditions. The next section provides grid specifications, formulations 

for sediment and water velocities, and resuspesion/deposition fluxes.  

 
Here and throughout the document, solid and liquid phases are assumed to be incompressible. 

The vertical axis of the coordinate frame is directed upward. Sediments, dissolved tracers and 

tracers attached to sediments are represented by vertical profiles of the sediment 

concentration ),( tzC s
 [kg/(m3 mixture)], the concentration of the dissolved tracer ),( tzC d

  

[kg/(m3 water)], and the concentration of the tracer attached to sediment ),( tzC p
 [kg/(m3 

mixture)]. The superscripts ( s ), ( w ), ( d ), and (p) denote the solid phase, liquid phase 

(water), dissolved phase, and tracer attached to sediment (pollutant) respectively. The 

subscripts ( i ) and ( j ) are introduced whenever sediments or dissolved traces are represented 

by a number of classes. All classes of particles in benthic layer have the same vertical velocity 

associated with the sediment consolidation ),( tzUU
s

c

s

i  . The vertical velocity of all 

dissolved tracers equals to the water velocity ),( tzUU wd

i  . Benthic and pelagic 

environments are represented by discrete, time-varying layers of thickness 
)()(   kkk zzZ , 

where the subscript k indicates the layer number, and (k+) and (k-) indexes indicate the top 

and the bottom interfaces between layers, respectively (Figure 1).  

 
 

Figure 1. Coupled benthic-pelagic system sketch. 

 

 

2.1 Mass conservation 

A general mass balance equation for sediments (
sCC  ), dissolved tracer (

dCC  ), and for 

tracer on sediments (
pCC  ) in a stretched Eulerian frame z=z(t), can be expressed as 

follows (Appendix A) 

 

 
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
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


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


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Here 
gV  is the velocity of the time-varying coordinate levels; )(

~
gVUU   is the velocity 

of either a particulate or dissolved tracer expressed in a time-varying frame )(tzz  ; U  is 

the tracer velocity in an immobilised frame;   is the diffusion coefficient, representing either 

turbulent mixing in the water column or biodiffusion in the sediments.   is the porosity when 

equation (2.1) is applied to the dissolved tracer, and 1  in the case of sediments or 

sediment attached tracers.  

 

To solve equation (2.1) in both the water column (
topzzz int

) and sediments (
intzzzbot 

), the location of the sediment-water interface (
intz ) must be known. Assuming no fluxes through 

the lateral boundaries, and immobilised, impermeable base underlying deep sediments, the 
displacement of the sediment-water interface can be related to the material fluxes across the 

interface: 

 

)(int ws FF
t

z





.          (2.2) 

 

Here sF , wF  are the area-normalised volumetric fluxes of solid and liquid phases across the 
water-sediment interface, respectively. 

 
The volumetric flux of solids can be expressed as 

 

s

s
s Q

F


 ,           (2.3) 

 

where 
sQ   [kg/(m2 s)] is the resuspension or deposition flux of the sediments, and 

s is the 

density of the sediment grains. 

 

To estimate liquid fluxes, we assume that an amount of pore water expelled from sediments 

during resuspension is a function of the observed sediment porosity, and an amount of water 

trapped in sediments during deposition is a function of the porosity of fresh sediment deposits. 

The corresponding fluxes can be expressed as 







s

sQ



, where   is a void-ratio of either 

resuspending or settling sediments. In consolidating or swelling sediments, water exchange 

between benthic and pelagic layers is also influenced by an expulsion of pore-water from 

consolidating sediments, and entrainment of water into swelling sediments. The corresponding 
fluxes across the sediment-water interface can be represented as a function of the interface 

velocity  
intzz

s

cU


 , where 
s

cU is the velocity of consolidating or swelling particles. 

Combining fluxes due to resuspension/deposition and swelling/consolidation gives a net flux of 

water through the sediment-water interface: 

 

s

s

zz

s

c

w Q
UF






 int
        (2.4) 
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2.2 Boundary conditions 
 

There are no fluxes of any tracer through the top of the water column and through the bottom of 

the benthic layer: 

 

0
~













 C

z
U  ;    

topzz  ,   
botzz       (2.5) 

 

Material fluxes across the “water-sediment” interface are specified taking into account 

resuspension/deposition and swelling/consolidation of sediments: 
 

rqC
z

U 











 

~
;   

intzz        (2.6) 

 

The right hand side in (2.6) represents either sediment resuspension/deposition (
sQq  , 1r

), or advection of the dissolved tracer across the sediment-water interface (
dw CFq  , 1r

), or pollutant flux 









s

p
s

C

C
rQq , .  

 

Diffusion across water and sediments is incorporated into the model by adding the corresponding 

fluxes to q:  s

bed

s

wc

s CCQq    in the case of sediments and sediment attached tracers, 

and  d

bed

d

wc

dw CCCFq    for the dissolved tracers. Here 
*

wcC and 
*

bedC  denote 

concentrations in water column and sediment bed, respectively. The rate constants   and 

are given by   1
),min(


 bedwc

s

o ZZ , and      1
),min(


 bedwc

d

o ZZ , where  
s

o

and 
d

o are vertical diffusion coefficients for solid and dissolved phases, respectively, and 

bedwc ZZ  ,  are thicknesses of the near bottom grid cells in water and in sediments, 

respectively.  

 

 

2.3 Multi-grain-size sediments  
 

Having sediments represented by a number of size fractions (i = 1 – n), implies that equation 
(2.1) with the boundary conditions (2.5, 2.6) is applied to each sediment fraction, and fluxes 

(2.3) and (2.4) are reformulated as follows:  

 





n

i
s

i

s

is Q
F

1 
,         (2.3’) 

 




 














n

i
s

i

s

ii

zz

s

c

w Q
UF

1
int 


.      (2.4’)  

 

Here 
s

iQ  is the resuspension/deposition flux of the i-th fraction of the particulate tracer, and 

s

i is the density of the sediment grains, i  is the void-ratio of either resuspending or settling 

sediments. 
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3 Key processes and parameters  
 

To solve (2.1-2.6), resuspension/deposition fluxes (
sQ ), settling velocity of suspended sediment 

( sU ), velocity of consolidating particles (
s

cU ), vertical water velocity ( wU ), and velocity of 

the numerical grid levels (
gV ) are required. This section outlines formulations for these variables 

employed in MECOSED.  

 

3.1 Sediment velocity 
 

There is a large body of literature concerning the settling of suspended particles in turbulent 
flows (e.g. Dyer, 1989; van Rijn, 1993; Thomas et al., 1999). Settling velocities are 

parameterised as a function of local hydrological characteristics and physical properties of the 

sediment grains. Different formulations are typically applied to cohesive and non-cohesive 

sediments. In MECOSED a constant settling velocity is assumed for any class of non-cohesive 

sediments, and a number of flocculation options is available for fine cohesive particles. More 

detailed discussion of suspended sediment settling for cohesive and non-cohesive particles can 
be found below in chapters 4 and 5.  
 

The level of accuracy and complexity in representing velocities of sediment particles in benthic 

layers varies from one study to another depending on the availability of data and modelling 

objectives (Torfs et al., 1996; Mitchener & Torfs, 1996). Geotechnical engineers have made a 
considerable progress in understanding and predicting self-weight consolidation of fine-grained 

sediments (Toorman, 1996). However, our current understanding and a capacity to predict 

behaviour of natural sediments, typically represented by chemically and biologically active 

mixtures of water, sand, fines, and organic materials, are still limited.  

 
In a consolidating sediments MECOSED specifies velocity of sediment particles as a function 

of the sediment void ratio. The later evolves through time by relaxing to a predefined ultimate 

value  

 

c

m

s

c

Ttz

U )(

)1(

1

)1(

1 







 





         (3.1) 

 

Here   is the actual void ratio, m  is the ultimate void ratio, and cT  is the time scale of the 

seabed swelling or consolidation processes. Note that settling velocities of consolidating 

sediments in (3.1) are the same for all sediment classes. Some justification for this choice provide 

laboratory studies showing that in bottom sediments represented by concentrated mixtures of 

particles, the sediment grains tend to form a matrix structure, which is generally able to support 

particles without falling through (Torfs et al., 1996).   
 

Equation (3.1) represents a mass conservation of a uniform medium with a time-varying porosity 

(Appendix A). To solve (3.1), the sediment velocity must be specified at the bottom of the 

sediment layer: 0
s

cU ; botzz  .  
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3.2 Water velocity 
An equation for vertical component of the water velocity in a water column and in sediments 

follows from the mass balance equation for the liquid phase (Appendix A): 

 
 

z

V

tz

U g
w














 


~

        (3.2) 

 

Equation (3.2) expresses water flow as a function of the time-varying porosity and sediment 

thickness, and thus gives an integral representation of various liquid fluxes, associated with 

sediment erosion/deposition, swelling/consolidation, settling and bioturbation processes. To 

solve (3.2), the water velocity must be specified at the bottom of the sediment layer: 0
~

wU

;
botzz   

 
 

3.3 Velocity of the numerical grid levels 
 

To maintain high vertical resolution near the seabed surface, MECOSED employs stretched 

numerical grids. In a dynamic coastal environment with frequent resuspension and deposition of 

sediments, such grids tend to generate large apparent fluxes between the grid layers translating 

into large numerical diffusion of simulated tracers. To mitigate this effect, following 

Margvelashvili (2008), MECOSED employs combined sigma and k-sigma grids which allow 
for high vertical resolution and low numerical diffusion to be maintained throughout the 

simulation course. More detailed description of this grid formulation is given below in chapter 

7.  

Having specified the grid dynamics, the velocity of grid levels is calculated as 
t

z
V k

g 


  .  

 

3.4 Resuspension and deposition fluxes  
 
Commonly used semi-empirical formulas have been employed to represent sediment 

resuspension and deposition on a cohesive or non-cohesive sediment bed. On a sandy sea-bed, 

it is assumed that under steady, uniform flow and sediment loading conditions, an equilibrium 

distribution of sediments in the water column tends to be established, with the resuspension and 

deposition fluxes cancelling each other. An appropriate sediment flux boundary condition can 
be specified using the Smith and McLean formulation (Smith & McLean, 1977). In cohesive 

sediments the bottom boundary condition is formulated using Ariathurai & Krone (1976), and 

Partheniades (1965) formulations. The sediment fluxes are functions of the bottom shear 

stresses, which are calculated using the Grant & Madsen approach (Madsen., 1994).  

 

More detailed description of the resuspension and deposition fluxes can be found below in 
chapters 4 and 5. The bottom boundary layer module of MECOSED is presented in chapter 6. 

 

3.5 Active layer 
 

Processes that control the thickness of an active, top sediment layer ( aa zzh  int ) are not well 

understood. Previous methods used to prescribe the erosion depth in coastal sediments vary 
considerably. Reed et al. (1999) prescribed a thickness of 0.3 mm when simulating storm 

resuspension on the Eel River shelf (Northern California). Wiberg and Harris (2001) calculated 

thickness of this layer on sandy sediments as a function of mixing depth developed by migrating 

ripples or sheet flow. In silty sediments the active layer depth was a function of the bottom shear 

stress. MECOSED assumes that the thickness of the top sediment layer is constant throughout 
the simulation and its value must be specified through the model calibration study.  
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3.6 Numerical solution 
 

The simulation schema is as follows. First, sediment concentrations in a water column and in a 

sediment bed are updated, followed by the calculation of liquid fluxes, and solution of the 

transport equation for the dissolved matter. The advection-diffusion equation (2.1) is expressed 
in a conservative form: 

 

 
k

zk C
z

UZC
t




























~
.      (3.3) 

 

Boundary conditions for (3.3) are provided by (2.5) and (2.6).  The numerical model utilises 

implicit finite difference schemes to approximate advective and diffusive terms. The governing 

equations are transformed into a system of three-diagonal, algebraic equations and solved 

numerically. More details on numerical implementation of MECOSED are available in chapter 
7. 

 
 

4 NONCOHESIVE SEDIMENT  
 

4.1 Settling velocity 
 
In MECOSED settling velocity of the suspended particles, rather than the particle size, is 

specified directly as the model input data. In many applications however data on sediment grain 

size are more readily available than the settling velocity. This section includes a number of 

formulations expressing sediment settling velocity as a function of the sediment grain size.  

For a viscous Stokes regime ( 1Re
0




dU s

 ) the terminal fall velocity of a sphere can be 

calculated as 








 




 wp
s gd

U
18

2

               (4.1) 

where d is a diameter of the sediment particle, 0  is kinematic water viscosity,   is dynamic 

water viscosity, and  g is particles acceleration due to gravity.  

 

Particles of different shapes have different fall velocities. For natural sand the shape effect is 

largest for relatively large particles (> 300 mkm) which can have a shape greatly deviating from 

the spherical form. Empirical formula developed by van Rijn (1993) can be used to evaluate 

terminal fall velocity for such particles: 
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where 






 




 ws

gg '  is the reduced gravitational acceleration and  
0

'



dgd
Rd   is a 

sediment grain densimetric Reynolds number. 
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Fig. 4.1 Terminal fall velocities of quartz spheres in water calculated using Stokes and Van 

Rijn formulas. 

 

The settling velocity of a single particle can be modified by the presence of other particles. This 

effect, known as a hindered settling, is largely caused by the fluid return flow induced by the 

settling particles, and can be important in the near bottom region where high concentration of 
sediments is common.  

 

 

4.2 Critical shear stresses for initiation of motion 
 

Most of the sediment transport formulations are based on the Shields curve to determine the 

critical shear velocity for initiation of the sediment motion. To avoid iterative computations, 
required by the Shields method, Yalin’s method is often used (van Rijn, 1993) 
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Fig. 4.2 Critical shear stress for initiation of particles motion according to Yalin’s formula. 

 

As soon as the sediment transport process is established, ripples and dunes are formed on the 

seabed. The critical shear stress for initiation of motion on the seabed covered by ripples is 
different from that of a flat bed. The bed shear stress over the rippled seabed is composed of a 

part related to skin friction over the bed surface and another part related to the non-uniform 

pressure distribution over the bed form crest and eddy regions. A sediment particle resting on 

the surface of a bed form will be set in motion by the skin friction force or by the turbulent 

fluctuations in the eddy regions downstream the crest. For increasing values of the bed shear 
velocity, the particles will be moving along the bed by more or less regular jumps (saltation). 

When the value for the bed shear stress becomes comparable with the particle fall velocity, the 

sediment particles may go into suspension. The criterion for initiation of suspension is  

  

1* 
s

c

U

u
           (4.4) 

 

Another criteria for initiation of the suspension based on stability analysis was given by 
Engelund (1965) (as cited in van Rijn, 1993): 

 25.0* 
s

c

U

u
        (4.5) 

 
Fig. 4.3 Critical shear velocities for initiation of particles motion and sediment resuspension, 

according to formulas 4.3, 4.4, and 4.5. 
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Fig. 4.3 shows critical shear velocities for initiation of particles motion and sediment 

resuspension based on formulas (4.3-4.5). Note that according to these formulas shear velocity 
required for initiation of the sediment motion can exceed the critical shear of resuspension.  

 

4.3 Deposition and Resuspension 
 

When the bed shear velocity exceeds the settling velocity, noncohesive sediment are 

resuspended and transported as suspended load. When the bed shear velocity falls below both 

settling velocity and the critical Sheld’s shear velocity, suspended sediment deposit to the bed. 

A consistent formulation of these processes can be developed using the concept of a near bed 
equilibrium sediment concentration. According to this concept, under steady, uniform flow and 

sediment loading conditions, the resuspension and deposition fluxes tend to cancel each other 

resulting in an equilibrium distribution of sediments in water column. The sediment flux 

boundary condition in this case reads as follows  

 

)( ,,

s

eqi

s

ri

s

i

s

i CCUQ  ,      (4.6) 

 

where 
s

riC ,
 is an actual concentration of sediments at the reference level rz , and 

s

eqiC ,
 is an 

equilibrium reference concentration. 

 
An equilibrium sediment concentration is defined as (Smith J.D., McLean S.R., 1977)  
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Hhere iS   is a normalised excess skin friction, defined for each sediment class I, as  

 

||

||||

ci

cibi

iS


 


 ,       (4.8) 

  

where 


bi  is the skin friction, derived through the bottom boundary layer model,  ci  is critical 

shear stress for initiation of the sediment erosion (currently  225.0
s

iici U   ), Cbi is the 

sediment concentration in the bed, and a is a constant of the order of 10-3.  Following to (Glenn 
S.M., Grant W.D., 1987) an approximate value of a = 0.002 is adopted. The reference height 

rz  is usually specified at the distance of 7*d above the sediment bed (Coastal Engineering 

Manual, 1999). Another common semi-empirical method to evaluate the equilibrium 
concentration is based on the formulation developed by Van Rijn (1984a, 1984b). MECOSED 

employs Smith and McLean formulation (1977). 

 

For a coarse numerical grid, not resolving sediment profiles near the seabed (typical to 3D 

applications), sediment concentration at the reference height can be estimated as (Appendix E): 
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Here 
s

C0
 is sediment concentration averaged over the near bottom cell, 

s
C1  is the sediment 

concentration at the height H, D is a height of the near bottom cell, 
0*   zu  is turbulent 

diffusion coefficient, 
0  is the diffusivity coefficient in a viscous sublayer,   is van Karman 

constant, *u  is shear velocity, 

*

0

u


   (m), 

0


sU
  (1/m),   )1( p . 

 

5 COHESIVE SEDIMENT 
 

Cohesive sediments do not act as separate individual particles but tend to stick to each other. 

The degree of the cohesion rises with the proportion of clay minerals in the sediment and starts 
becoming significant when the sediment contains more than 5 – 10 % of clay by weight 

(Mitchener H, Torfs H., 1996). Fresh mud deposits have a very loose texture of mud flocs and 

erosion can occur easily. If the deposits are not eroded again, its density gradually increases as 

interstitial water is pressed out of the fresh soil by the weight of the deposit itself . With the 

compaction of the soil the resistance to the erosion rapidly increase. In a water column cohesive 
sediment particles stick together forming aggregates known as flocs whose size and settling 

velocity can be much larger than those of individual particles.  

 

5.1 Flocculation and Settling 
The transport and fate of fine grained sediment in estuarine and coastal waters is a function of 

the effective settling velocity of the sediment, which in turn is affected largely by flocculation 

effects. The first major attempt at modelling the flocculation process was made by 

Smoluchowski in 1917. The equations in Smoluchowski’s model have formed the core of 
almost all subsequent research into flocculation modelling. Brief review on flocculation 

modelling is available in (Thomas et al, 1999). 

 

The mathematical representation of the flocculation conventionally is based on considering two 

discrete steps: transport and attachment. The transport step, leading to the collision of two 
particles, depends on three processes: (a) the random thermal “Brownian” motion of the 

particles, (b) imposed velocity gradients from mixing, (c) differences in the settling velocities 

of individual particles (differential settling).  Attachment is then parameterised by an efficiency 

coefficient accounting for the fact that not all encounters result in coagulation. The efficiency 

coefficient is a function of the physico-chemical properties of sediments and water, and of the 
organic compounds (coatings, polysaccharides, etc.) in the sediment. Hence it is basically an 

empirical parameter. 

 

Unfortunately, the computational intensity of the approaches based on Smoluchovski’s model 

precludes direct simulation of flocculation in operational cohesive sediment transport models 

for the immediate future. An alternative approach, which has met a reasonable success, is the 
parameterisation of the settling velocity of flocs in terms of particles primary size d, 

concentration C, and flow characteristics such as shear stress or turbulence intensity in the water 

column or near the sediment bed. Semi-empirical expressions having the functional form 













 q

z

U
CdUU sss ,,, ,      (5.1) 

have been developed to represent the effective settling velocity. 
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The simplest and the most common way to use expression (5.1) is to replace constant settling 

velocities in the transport equations by effective settling velocities. Such substitution is valid 
when the typical time scales for the particles flocculation and break up are less than the typical 

time scale of the sediment advection or settling. In this case parameters of flocs can be derived 

from the local hydro-physical data neglecting advection and kinetics of the particles 

aggregation. In a deep sea environment one may speculate that most flocs are created in surface 

layer and then settle on the seabed without been broken up into smaller ones (Jankowski et al., 
1994). Therefore floc size is not always function of local parameters and more flexible 

formulation of settling, taking into account advection and kinetics of the sediment flocculation 

and break up might be required.  

 

A number of empirical formulations, with different levels of complexity, have been developed 

to predict settling velocities of the sediment flocs. The most common and simple formula is 
based on an assumption that the flocculation and therefore also the mean settling velocity are 

scaled by the sediment concentration: 

 

 bss CaU           (5.2) 

 

Here a and b are empirical constants (Dyer, 1989).  
 

Another heuristic formula was advocated by Van Leussen (cited in Winterwerp, 1998) 

 

20
1

1

bG

aG
UU

ss




        (5.3) 

 

where 
sU  and 

s
U 0

 are an actual and reference settling velocities respectively, a and b are 

empirical parameters, and G is dissipation parameter defined as 

 

2

0






e
G        (5.3’) 

 

where e  is the dissipation rate (m2/s3),   is kinematic viscosity, and 0  is Kolmogorov micro-

scale of turbulence.  

 
 

Empirical formula for the settling velocity of the sediment flocs based on observations in the 

Brisbane estuary and Moreton Bay (eastern Australia) has been developed by You et al, (1999; 
see also Howes, 2002): 
 

   𝑈𝑠 = 𝑈𝑜𝑒𝑥𝑝(0.945𝐶 − 0.105𝐶2).      (5.4) 

      

Here sU  is a settling velocity of flocs, 
s

U 0
 is a flocculation parameter representing 

settling velocity of individual sediment grains, and C  is a concentration of suspended 

sediments. This flocculation formula is based on settling tests conducted on sediments 
from the Brisbane river and was found to fit the settling velocity of mud from Moreton 

Bay for concentrations of up to 9g/L.   
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5.2 Critical shear stresses of resuspension 
 

When the bottom consists of clay and silty materials, cohesive forces between the sediment 

particles become important. These forces cause a distinct increase of the resistance of the soil 

against erosion. Simple relationship between the critical surface erosion stress and the dry 
density of the bed has been proposed by Okenden and Delo  (as cited in Mitchener and Torfs, 

1996; and Cancino & Neves, 1999) 

 

  
5.0

0012.0 dce   ,       (5.5) 

 

where 
d  is dry density of the sediment bed 









1

s

d . 

 

Mitchener and Torfs (1996) advocated another experiment-based formula for critical surface 

erosion stress in artificial sediment bed 

  
75.0.)1000(015.0  bce        (5.6) 

 

Here 
b  is the bulk density of the bed  











1

sw

b .   

 

Hwang and Mehta (1989) proposed the following relationship 

 

05.0)065.1*001.0(883.0 2.0  bce      (5.7) 

 

According 5.6 and 5.7 the critical shear stress is function of the bulk density of the sediment 

bed which must be known either from observations or from the model evaluation (e.g. through 

the sediment consolidation model).  Fig. 5.1 illustrates these formulations. 

 
Fig. 5.1 Critical shear stress as a function of the sediment layer age.  

Initial void ratio 0 =50, minimal void ratio m =1.6. Consolidation rate constant a = 1 day  
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5.3 Deposition and Resuspension 
 

Erosion and deposition of fine sediments on cohesive bed are distinctly different from those on 

sandy bed (Mehta et al., 1989). On cohesive beds, the erosion process might be irreversible 

because, once eroded, the cohesive sediment cannot be reconstituted in their consolidated form, 
particularly in the energetic coastal or estuarine environment. Therefore erosion is not balanced 

by equal volume of deposition. The eroded fine sediments (silt and clay) are winnowed, carried 

out and deposited in a low-energy environment. 

 

Erosion and sedimentation fluxes at the sediment-water interface are functions of the bed shear 

stress 
b , the critical shear stress of deposition 

cd , and the critical shear stress of erosion
ce . 

If 
b > 

ce  erosion occurs from the top of the bed downward until the shear stress applied to 

bed is equal to the bed shear strength. If 
b  < 

cd  the sediment will be deposited. The deposited 

mass of sediment forms a bed with a higher value of the void ratio. Due to the self-weight of 

the sediment mass, consolidation begins and the bed properties change. When 
cd <

b <
ce , 

the applied stress is high enough to prevent any deposition from occurring, but not high enough 

to erode even the top bed layer.  This situation occurs when the bed has been eroded to a layer 

that is sufficiently hard to resist further erosion. Neither erosion nor depos ition occurs under 

such conditions, and only consolidation processes proceed to operate in sediments. 

 
The bottom boundary condition for cohesive sediments is formulated as follows (Ariathurai & 

Krone 1976, Partheniades 1965) 
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where probabilities for deposition and erosion are given by 
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The resuspension rate M  (kg m2 s-1) and the critical stresses ce  and cd  must be obtained 

from empirical formulations. A short review of literature values of M  is given in Uncles and 

Stephens (1989) At present, the sediment transport model uses formulation suggested by Delo 
(1988) (as cited in Uncles and Stephens, 1989): 

 

M =0.002 * ce   (kg m2 s-1)       (5.10) 

 
The critical shear stress for erosion has been discussed above. The critical shear stress for 

deposition is typically approximated by a constant value. Based on laboratory experiments with 

natural mud from the Western Scheldt, Winterwerp et al. (1991) suggests cd =0.2 N/ m2. For 

Gironde Estuary Li et al. (1994) applies values in the range from 0.3 to 0.5 N/m2. Govindaraju 

et al. (1999) in a modelling study for Canaveral Harbor used cd =1.43 N/m2.   
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5.4 Mixed bed 
 

Because of distinctly different properties of fine and coarse sediments, historically, erosion /  

deposition studies have concentrated largely on the behaviour of either cohesive or cohesionless 

sediments. However, natural sediments rarely consist of only mud or sand and in many 
applications erosion/deposition parameterisation for combined fine and coarse sediments is 

required so that the whole spectrum of natural sediment size combinations can be modelled. 

Unfortunately an understanding of the behavior of such mixtures is still very limited. 

 

In MECOSED resuspension and deposition of each sediment fraction is treated individually 

using formulations developed for either cohesive or non-cohesive sediments. When fine 
particles are resuspended from the upper most active layer, coarse typically non-cohesive 

sediment left in this layer provide armoring of the underlying sediments.  

 

 

6 BOTTOM BOUNDARY LAYER 
 

Bottom friction in a turbulent flow depends on bottom roughness. Ripples and bedload tend to 
dominate roughness on sandy beds, whereas bioturbated mounds typically dominate roughness 

of fine-sediment, cohesive beds (Li & Amos, 2001). On sandy sediments ripples start to form 

as the friction at the bed exceeds the threshold of sediment motion. The appearance of the 

ripples changes the appearance of the bottom to the flow above, as the flow resistance on the 

rippled bed will primarily be composed of pressure drag forces on the bed forms rather then of 

drag forces on individual sediment grains. Despite the increased bottom roughness associated 
with a rippled bed, the drag force acting on individual sediment grains and not the drag force 

on the bed forms is responsible for the sediment motion caused by the flow. The concept of 

partitioning bottom shear stress into a skin friction that moves sediment and a form drag has 

received considerable attention in the context of sediment transport mechanics in steady 

turbulent flow (Coastal Engineering Manual, 1999). Under energetic conditions the ripples 
wash away and the bed transport mode goes into “sheet flow” regime. The increased dissipation 

during “sheet flow” regime is associated with the momentum transfer by saltating particles.  

 

Another important physical process influencing bottom roughness and friction is interaction of 

surface waves with low frequency currents (Grant & Madsen 1986). The wave –current 
interaction is associated with the nonlinear coupling of the wave and current turbulent boundary 

layers. Because of the short time scale of the wave oscillations, the region in which the shear 

stress associated with the wave motion is significant, i.e., the wave turbulent boundary layer, is 

confined to a relatively thin region close to the seabed. Turbulent diffusion above the wave 

boundary layer, i.e., the potential flow region for the wave, is associated with the mean current 

only. The increased turbulent diffusion of low-momentum fluid within the wave boundary layer 
causes the current above the wave boundary layer to appear to feel a much greater bottom 

roughness than physically exists. 

 

 

6.1 Ripple predictor 
 

According to Li et. al. (1996), in coastal and shelf regions with a high wave energy ripples will 
adjust to orbital motion in three different ranges. In the first equilibrium range when the flow 

is relatively slow, both ripple height and length tend to increase with orbital excursion until 

ripple steepness reaches its maximum. When the flow strength increases further, ripples enter 

a “breakoff” range where the ripple height diminishes, but the ripple length stays approximately 

constant despite increasing orbital current intensity. Finally, under high wave energy 
conditions, ripples wash away and the bed transport mode goes into the third “planar” or “sheet 

flow” regime. An instability mechanism that controls the bed forms is poorly understood. 
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Hence, empirical formulations are commonly used to evaluate ripples dimension, as well as the 

roughness length associated with the bed forms. 

 
Bottom friction on a rippled sediment bed depends on ripples geometry, which in turn depends 

on the bottom friction. This cyclic dependency requires iterative solution to find the bottom 

friction over the rippled sea bed. One of such solutions offered by Li and Amos (2001) predicts 

ripples in a combined wave-current flow, and requires iterative assessment of various shear 

stresses to estimate ripple characteristics.  Harris and Wiberg (2001), instead, advocate 
empirical predictor for ripples in a wave-dominated environment which estimates bed forms 

using surface wave and sediment characteristics only and does not require iterative cycling. An 

alternative formulation has been developed by Wikramanayake (1993) (as cited in Black and 

Oldman, 1999).  

 

MECOSED enables to either specify ripple dimensions manually or apply Wikramanayake’s 
(1993) ripple predictor to calculate bed forms in a wave dominated environment. Under 

combined wave-currents or current-dominated flows the bed forms must be specified as the 

model input data. 

 

Wiberg and Harris (1994, 2001). 
 

Estimates of wave-formed, symmetric ripple height and spacing are calculated from sediment 

size and wave orbital velocity data. Following Wiberg and Harris (1994) the ripple spacing is 

expressed as  

 

d535 ,         (6.1) 

 

and ripple steepness as 
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where d  is mean grain size and )/( avbbTuD   is wave orbital diameter.  

Using this relationships ripple height will decrease under energetic waves with large orbital 
velocities. 

 

Wikramanayake (1993) 

 

The Wikramanayake formula includes a nondimensional parameter: 

 

3)1(

4
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Z w
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
         (6.3) 

where w   is the skin friction Shields parameter 

 

gds

uf bw

w
)1(

5.0
2


           (6.4) 

 

where v is the kinematic viscosity, ub is the representative bed orbital velocity, d is the median 

grain size, g is acceleration due to gravity, and s is the relative density of sediment.  

The Shields parameter includes a wave friction factor (fw) which can be specified from the 
empirical relationship (6.19). 



 20 

 

The ripple height and length are defined in ranges: 
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Beyond a value of Z=0.18, it is assumed that sheet flow conditions apply and that ripple height 

and length are zero. 
 

 

Physical roughness 

 

Skin roughness length is estimated from the sediment grain size as  
 

dkbs   

 

The physical roughness length for bedforms is estimated following Grant and Madsen (1982)  
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“Sheet flow” regime 
 

Observational studies have shown that the friction factor at hight-transport stages depends on 

the thickness of the bed load layer (Li and Amos, 2001). In this case the transport-related shear 

stress should be used for predicting ripple geometry and onset of sand suspension and sheet 

flow transport. Roughness due to saltating sediment can be estimated from Wiberg and Rubin 
(1989) and then added to the form drag roughness. Note that ripples tend to dominate the 

roughness when they are present, e.g. in a relatively low and moderate shear stress environment, 

while at high shear stress the sediment transport will dominates the roughness (ripples are of 

small steepness in this range).  

 
 

6.2 Shear stresses 
 
Bottom friction under combined waves and currents is estimated in MECOSED through the 

Grant and Madsen model (Madsen, 1994) which takes into account nonlinear interaction 

between waves and currents within the bottom boundary layer. The model is applicable only 

when the bottom physical roughness scale does not exceed the thickness of the wave bottom 

boundary layer. “This limitation is not unique to this class of models. It is inherent in all 
theoretical formulations of turbulent boundary layer flow that apply no-slip condition at some 
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reference level, and may, for large roughness lead to nonsensical result of a boundary layer 

sickness less than the physical scale of bottom roughness elements. When the predicted 

thickness of the boundary layer is not large relative to the physical scale of the bottom 
roughness, assuming a horizontally uniform flow is a poor assumption. This issue is particularly 

important in the context of wave-current interaction in the coastal environment where wave-

generated bedforms (ripples) create a large bottom roughness. More theoretical and 

experimental studies are required to shed some light on this problem…” (Madsen, 1994).  

 
An alternative option to estimate bottom shear stress (available in MECOSED) is based on log-

profile approximation of currents over the ripples and Swart’s (1974) (as cited in Black and 

Oldman, 1999) formulation for the wave induced friction over the sediment grains. A net 

friction is represented as a linear combination of the current friction over the ripples and the 

wave friction over sediment grains. The model requires two roughness scales, one associated 

with individual grains and another associated with the bedforms.  
 

Shear stresses under combined wave-current flow (Grant and Madsen model) 

 

Following Madsen (1994), we estimate bottom shear stress under combined waves and 

currents as follows.  
 

The representative shear velocity is obtained from 
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in which  /* wrwmu   is the shear velocity based on the maximum representative wave-

associated shear stress ( wr ),  
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expresses the ratio of current ( c ) and wave ( wr ) bottom shear stresses; a ratio which 

generally is much smaller than unity and therefore results in values of C , given by (6.10), 

close to unity. cw  gives angle between current direction and direction of wave propagation.  

 

To obtain the maximum wave shear stress, the wave friction concept in the presence of a current 

is introduced through the definition 
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where bru  is the near-bottom orbital velocity amplitude. The wave friction factor as a function 

of relative roughness can be evaluated by the following formula 
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Here r is wave radian frequency, 
oN zk 30 is equivalent Nikuradse sand grain roughness; 

4.0  is von Karman’s constant. The wave boundary layer thickness is determined from the 

following expression 
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The apparent bottom roughness experienced by currents in presence of waves is obtained by 
matching the current velocities at the edge of the wave boundary layer 
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The iterations are started by 0)0(    and 1
)0(
  CC  from (6.10) resulting in 

)0(

wcwc ff   from (6.13) and then 
)0(

** wmwm uu   from (6.12) followed by 
)0(

** rr uu   from 

(6.9). For the initial iteration 
)0(

** rr uu   in (6.14) and (6.15) yields the first approximation for 

the current shear velocity 
)0(

** cc uu  .  With 
)0(

** cc uu  and 
)0(

** wmwm uu   the value of   

may be updated by use of (6.11) and the procedure may be repeated until convergence is 

achieved )(
)1()( 


n

wc

n

wc ff . 

 

 

Wave dominated environment 

 
Velocity and shear stress vary through the wave period, but it is common to parameterise initial 

motion and suspension conditions under waves in terms of the maximum boundary shear stress, 

or maximum shear velocity (Wiberg, Harris 1994). The magnitude of the maximum shear 

velocity under the wave can be expressed as 

 

brwwrwm ufu 2/1

* )2/(/           (6.17) 

 

where the near-bed orbital wave velocity amplitude bru , in the case of monochromatic and 

linear waves, can be determined from  
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)sinh(2 kH

a
ubr


          (6.18) 

 

Here k is the wave number, 
T




2
  is the wave radian frequency, T  is the wave period, H is 

the water depth, and a is the wave height. 
 

The expression for the wave friction factor given by Grant, Madsen model (6.13) is of the same 

kind as that proposed for a pure wave environment by Swart (1974)  
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where the skin friction equivalent roughness dkb 5.2  is proportional to the mean grain 

diameter, and the half orbital excursion is given by 


br
S

u
a  .  

Note that the wave friction factor in a purely wave environment can also be evaluated using 

Grant, Madsen formulation (6.13) with .1C      

 

Current dominated environment 

 

For the current dominated case the log-law can be applied to estimate skin friction 

 

 orc zzuu /ln/*            (6.20) 

 

where 
30

N

o

k
z  ,    dk N  , and d  is mean diameter of sediment grains. 

 

7 REACTION TERMS 
 

7.1 Sorption-desorption 
 

Simulation of pollutants has become common over the last decades (Ambrose et al, 1993; 

Onishi et al., 1981, 1989; Shrestha & Orlob 1989; Zheleznyak et al., 1992). At minimum, the 

pollutant models include both chemical degradation and sorption to solids. Sorption is the 

bounding of dissolved chemicals onto solid phase, such as benthic or suspended sediment, 

colloidal organic material or biological material. It can be important in controlling both the 

environmental fate and toxicity of pollutants. Sorption may cause the chemical to accumulate 

in bed sediment or bio-concentrate in fish. 
 

If sorption reaction is fast relative to other environmental processes an equilibrium distribution 

between the liquid and solid phases can be assumed (Ambrose et al., 1993). For low 

concentrations equilibrium sorption is linear with dissolved pollutant concentration  
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where  
dK  [m3/kg] is the distribution coefficient, pĈ  [A/kg (dry sediment)] is pollutant 

concentration, A is the pollutant mass or some measure of the pollutant activity, dĈ  [A/m3 

(volume of water)] is the concentration of the dissolved fraction.  

 

At equilibrium the distribution of concentrations between liquid and solid phases is controlled 

by the distribution coefficient 
dK . However the total mass of dissolved and adsorbed 

pollutants, per unit volume of sediment-water mixture, is controlled by 
dK  and the amount of 

solid phase present 
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 where psp CCC ˆ  [A/m3 (volume of mixture)] is pollutant concentration, 
dd CC ˆ   

[A/m3 (volume of mixture)] is the concentration of the dissolved fraction, sC [ kg/m3 (volume 

of mixture)] is sediment concentration, and por is porosity. 

 

In addition to the assumption of instantaneous equilibrium, implicit in the use of equation (7.1) 

is the assumption of reversibility. Laboratory data for radionuclides and some chemicals 

suggest, however, that a hysteresis exist, with desorption being a much slower process than 

adsorption. In the simplest linear case the kinetics of sorption can be represented by first order 

reaction 
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where a  is the sorption/desorption rate constant.  
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These governing equations are similar to those used in (Onishi et al., 1981, 1989; Shrestha & 

Orlob 1989; Zheleznyak et al., 1992, Margvelashvili et al., 1997).  

 

The analytical solution of (7.3, 7.4) is: 
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where 
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In terms of dissolved concentration per unit volume of water the solution (7.6, 7.7) can be 
rewritten as  
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Assuming equilibrium tracer distribution between solid and liquid phases the concentrations 
of the dissolved and particulate fractions can be found from  
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Solving (7.10, 7.11) gives  
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 dp CMC ˆ          (7.13) 

 

 

Typical Kd values for 137Cs and 90Sr isotopes are 0.1 m3/kg and 2 m3/kg, respectively 

(Zheleznyak et al., 1992). Typical time scale for those radionuclides exchange between solid 
and liquid phases is 1 day.  

 

In MECOSED sorption and desorption are calculated using either assumption of equilibrium 

distribution or solving equations for the sorption kinetics.  

 

7.2 Decay 
 

To allow for simulation of radioactive tracers (or other tracers with some first order loss), 
MECOSED incorporates a decay process. A tracer with the decay constant k will have its 

concentration C reduced at a rate given by  
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This can be solved analytically, so that the concentration after a time step dt is:  

 

)exp()()( dtktCdttC          (7.15) 

 
 

8 NUMERICAL IMPLEMENTATION 
 

 

8.1 Numerical grid 
 

Time-varying numerical grids can generate apparent material fluxes between the grid 
layers, introducing numerical diffusion. When this artificial diffusion is comparable or 

exceeds diffusion due to physical or biological processes, the predicted distribution of 
any property in water or in sediments will be distorted. Diffusion in sediments is 
typically orders of magnitude less intensive than mixing in surface water. Hence, extra 
care has to be exercised when applying dynamic numerical grids to sediments. 

Numerical grids in sediments are also supposed to have high vertical resolution near 
the sediment-water interface, where the sediment and water properties often exhibit 
high gradients. 

  

Stretched depth-adapted numerical grids are commonly used in atmospheric and ocean 
modelling to maintain high spatial resolution in areas of significant spatial variability 

of simulated fields (Phillips, 1957; Blumberg & Mellor, 1987). Numerical grids based 
on sigma coordinates, having thickness of grid layers scaled by water depth, provide an 
example of such grid configurations. Using notations introduced in Figure 1.1, a sigma 
grid ( z~ ) in sediments can be specified as follows: 
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An evolution of this grid is illustrated in Figure 8.1a. The upper curve indicates location of the 
top level of the sediment grid, which coincides with the sediment water interface and varies with 

time due to regular resuspension and deposition of sediments and due to gradual swelling of the 

seabed. Zero level denotes the location of the initial, undisturbed seabed surface. The sigma 

levels maintain refined resolution near the sediment-water interface throughout the simulation 

period but, as shown later, they introduce large numerical diffusion in deep sediments. To reduce 

apparent fluxes, additional constraints must be imposed on the grid level dynamics.  
 

The following equation provides an example of the grid, which has reduced mobility of the grid 

levels under the top sediments: 
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  (8.3) 

 

Here   is a predefined minimum thickness of the sediment layers, and (n-1) denotes one time 

step back in time. For the sake of convenience in this paper we will refer to grid (8.3) as a k-
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grid. During the deposition event, this grid accommodates new sediments by varying only the 

top sediment layers. During the resuspension event, the grid layers in deep sediments remain 

immobilised until the erosion depth is large enough to reach this layer. The k-grid levels in deep 
sediments are less mobile than sigma-levels and hence less diffusive, however, as illustrated in 

Figure 8.1b, the k-grid fails to maintain a high vertical resolution of the top sediments during the 

deposition event. 

 
Figure 8.1. Stretched numerical grids (a) sigma grid (b) k-grid. Zero level represents initial 

location of the sediment-water interface. 

 
To achieve both high vertical resolution in the top sediments and low numerical diffusion in 

deep layers, we combined the k-grid (17) and the sigma-grid (15) into a single k-sigma grid, 

which is defined as follows: 

 

)ˆ~(ˆ
  kkkk zzpzz , 

botka zzz  
     (8.4) 

 

Here p is a weight coefficient varying from zero to one.  

 

An evolution of the combined k-sigma grid levels is illustrated in Fig. 8.2. The sigma component 
of the grid adjusts the coordinate levels to long-term variations of the bathymetry, while the k-

grid component enables the top sediment layer to follow high frequency oscillations of the 

sediment thickness. Varying the p value changes the time-scales of the grid relaxation to the 

sediment thickness. Increasing p freezes the deep sediment levels, reducing numerical diffusion 

in deep sediments and at the same time reducing resolution of the top sediments. Decreasing the 
p value improves the resolution of the top sediments, but tends to introduce higher numerical 

diffusion in deep layers.  

From (8.4), the velocity of the grid levels can be calculated as 
t

z
V k

g 


  . 

 
Figure 8.2. K-sigma grid levels in (a) erodible swelling (b) erodible consolidating sediments 

(p=1e-2). Zero level represents initial location of the sediment-water interface.  
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8.2 Simulation steps 
 

Since the sediment transport is assumed to be independent from the transport of water and 
dissolved tracers, the model first solves equations for the sediment transport, then updates water 

flow and finally solves equations for the dissolved and sediment-attached material transport. The 

simulation steps are as follows:  

 

(A) Sediment transport 
 

Sediment concentration in water column 

1. Calculate settling velocity of cohesive sediment and relative content of cohesive particles 

in a sediment bed. 

2. Using expression for the sediment erosion/deposition/mixing fluxes find erosion flux and 

find coefficient for implicit representation of deposition flux. 
2. Simulate diffusion, erosion, deposition and settling in water column. 

3. Update erosion/deposition flux, using updated concentrations in water column. (this step is 

required as the deposition term was calculated implicitly).  

4. If a net sediment flux is directed from the seabed into the water column (sediments are 

resuspended), check if there is enough amount of sediment in active layer.  
5. If there are not enough particles in the top sediment layer transfer available amount of 

sediments from this layer into the water column. Set erosion and deposition fluxes to zero. 

Calculate diffusion and settling. Having known amount of sediment taken from an active 

layer, specify the erosion flux. 

 
Sediment thickness 

1. Calculate velocities of solid particles in a consolidating/swelling sediment bed.  

2. Update sediment thickness and coordinate levels. 

2.1 Calculate location of the “water column – sediment bed” interface. 

2.2 Specify the thickness of an active layer. 

2.3 Specify grid levels. 
 

Sediment concentration in a seabed 

1. Calculate relative velocities of sediment particles. 

2. Update sediment concentration in bed. 
3. Update coordinate levels and concentrations in water column 
4. Find porosity and update concentrations in water column and in sediment bed if porosity 

is less than predefined minimum value. 

 

(B) Dissolved transport 

1. Update water flow between layers. 
2. Calculate concentrations  

2.1 If the water flow in directed from water column to sediment bed solve transport 

equations for water column first, using implicit representation for the tracers outflow. 

2.2  Update tracer fluxes at the water column – sediment bed interface 

2.3 Having known the tracer’s influx update concentration in sediment bed using explicit 
representation for the influx. 

2.4 If the water flow in directed from sediment bed into the water column solve transport 

equation for the sediment bed first, using implicit representation for the tracers 

outflow. 

2.5 Calculate fluxes at the water column – sediment bed interface 
2.6 Having known the influx update concentration in water column using explicit 

representation for the influx. 

3. Diffuse dissolved tracer across the “water column – sediment bed” interface 
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(C) Adsorbed tracer 

1. Using sediment fluxes determined in (A), simulate diffusion, erosion, deposition and 

settling in water column. 
2. Update erosion/deposition flux, using updated concentrations in water column. (this step is 

required as the deposition term was calculated implicitly).  

3. If a net flux is directed from sediment bed into the water column (tracer is resuspended), 

check if there is enough amount of the tracer in active layer.  

4. If there is no enough amount of the tracer in active layer transfer this tracer from an active 
layer into the water column. Set erosion and deposition fluxes to zero. Do diffusion and 

settling. Having known amount of sediments taken from an active layer, update erosion 

flux. 

5. Calculate sorption/desorption exchanges between solid and liquid phases.  

 

(D) Next time step  
1. Repeat (A) 

 

More details on numerical implementation of MECOSED can be found in Appendix B and C.  
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Appendix A: Mass balance equations 

 

In an Eulerian immobilised coordinate frame z, a general mass balance equation for the 
particulate or dissolved tracer can be expressed as follows (Boudreau, 1997): 
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Here C is either the volumetric concentration of the particulate tracer or concentration of the 

dissolved tracer in pore water, U is the material velocity given in a time-invariant coordinate 

frame, and   is the porosity when C is a dissolved tracer and 1  when (1) is applied to a 

particulate fraction. 

 

Introducing a new set of independent variables  
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and applying a chain rule to link derivatives in the old system to those in the new system  
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the mass balance equation (A1) is transformed into: 
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After a number of manipulations involving expansion of partial derivatives and combining 

different terms, (A4) can be transformed to  
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Introducing the velocity of new coordinate levels as seen by an observer in an immobilised 

coordinate system (note that 
t

z


 *

 is velocity of the old frame points with regard to new 

coordinate levels): 
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and suppressing the star superscripts in the notation of independent variables, equation for the 

mass conservation in a time-varying coordinate frame can be expressed as: 
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Here
gVUU 

~
 is the material velocity expressed in a time-varying frame 

 

Assuming C=1, and zero diffusion coefficient in (A7) gives a mass conservation equation for 

the liquid phase 
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Equation for the concentration of solids reads 
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Having sediment represented by single class of particles: )1( 



C

, and dividing the left 

and right hand side of (A9) by the sediment density, and neglecting diffusion, transforms (A9) 

into  
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Introducing a time-varying coordinate frame UVg  , and substituting in (A10) porosity by 

void ratio )1(   = 
)1(
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, reduces (A10) to  
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Using the expression for the sediment velocity in a cohesive consolidating sediment 

(Toorman, 1996)  
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and introducing new coordinates 
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, transforms (A11) to the finite strain 

consolidation equation derived by Gibson et al. (1967) 
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Here e  is an effective stress, and hK  is hydraulic conductivity. 
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Appendix B: Finite-difference approximation 
 

 

A general form of the calculated advection-diffusion equation is  
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with the boundary conditions specified at the top and the bottom boundaries  
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Here 
botz  and 

topz  are the bottom and the top boundaries of the layer, respectively. z coordinate 

is directed upward. 0/ outbotF  denotes material fluxes out of the modelling domain through 

the bottom boundary; 0/ inbotF  is material influx into the computational domain through the 

bottom boundary, 0/ outtopF  is material flux out of the modelling domain through the surface 

boundary, and 0/ intopF  is surface influx. The description of indexes follows notations 

introduced in figure 1. 

   

The governing equations (B1-B3) are transformed to the system of three-diagonal, 
algebraic equations, which is solved using Thompson’s method [ ]. The coefficients of 
the algebraic equations are defined using the following finite difference representation 
 

In the interior of the water column or in sediment bed: k=/=kbot, k=/=ktop  
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At the bottom boundary:  k=kbot 
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At the surface boundary: k=ktop 
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Here )(5.0 1  kkk  , )(5.0 1 kkk    , )(5.0 1  kkk ZZZ , and 

)(5.0 1 kkk ZZZ   . Boundary fluxes in (B8, B10) are specified through the corresponding 

boundary conditions. 
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Appendix C: Simulation steps 
 

(Simulation steps shown in this appendix do not include diffusion across water sediments and 
transport of the sediment-attached tracers). 
 

Since the sediment transport is assumed to be independent from the transport of water and 
dissolved tracers, the model first solves equation for sediment transport, then updates water flow 

and finally solves equation for the dissolved material transport. The simulation s teps are as 

follows:  
 

(A) The model updates settling velocity of the suspended sediments and solves advection 

diffusion equation for suspended sediment concentration expressed in a conservative form  
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Boundary conditions are given by 
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and operator  
kz f  is defined as   )()(   kkkz fff . 

During this step, the numerical grid remains immobilised and both s
ki

C
,

 and kZ  are known 

from the previous time-step. The finite difference scheme is implicit with respect to suspended 

sediment concentration in the right hand side of (C1). The boundary conditions include implicit 
representation for the settling terms, and explicit representation for the sediment resuspension 

terms. Due to implicit representation of the boundary conditions, actual amount of resuspended 

sediments is known only after solution of (C1-C3). If there is no sufficient amount of sediments 

in a sea bed, then the model reduces the resuspension fluxes to the amount of sediments available 

in the top sediment layer, and repeats solution of (C1-C3). 
 

(B) Next step is to define velocity of consolidating particles in a seabed by solving first order 

ordinary differential equation  
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with the following boundary condition at the bottom of the benthic layer 

 

0
s

cU ;        botzz    (C5) 

 

(C) Once the sediment fluxes across the sediment-water interface and velocity of consolidating 

particles are known from (A) and (B) steps, the model updates the sediment thickness and grid 

layers in sediments solving equation for the seabed-water interface location 
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and updating the numerical grid layers according to the grid equations ( ).  

 

(D) Having known sediment fluxes across water-seabed interface and having updated grid levels 

in sediments, the model solves advection-diffusion equations for the seabed particles 

 

k

s

i

s

i

s

iz
k

C
z

UZs
i

C
t



























  



 ~
      (C7) 

 
with the boundary conditions 
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Equations (C7-C9) are similar to (C1-C3), except that sediment fluxes across the water-sediment 
interface, shown in the right-hand side of (C9), now are known from step (A). 

 

(E) The model updates numerical grid and sediment concentrations in water column (since the 

sediment thickness has been updated in step C), and updates porosity in water and in sediments. 

 

This ends one time-step simulation of sediment transport, and the model proceeds with 
calculating dissolved material transport. 

  

(F) By this time, the numerical grid and porosity in benthic and pelagic layers have been updated, 

and the model can calculate water velocities from the mass conservation equation expressed in 

a conservative form 
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(G) Having this done, the concentration of the dissolved material in water and in sediments is 
updated from the mass conservation equation 
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Boundary conditions are given by 
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Having completed this simulation cycle, the model proceeds further with the next time step 

starting with (A). 
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Appendix D: Diffusion across water-sediment interface 
 

Diffusion of solid tracers across the water-sediment interface is calculated simultaneously with 

the resuspension and deposition using finite difference approximations. Diffusion of the 

dissolved tracers between water and sediment bed, for the sake of simplicity of the code, is 

calculated using analytical solution. Dissolved mixing across water and sediment bed is 

determined from the solution of the equations: 
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These equations represent the boundary condition for the dissolved tracers given in terms of 

point sources rather then fluxes. Introducing new variables  
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equation (D 1) can be rewritten as  
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An analytical solution of (D 3) is: 

 

   oowc DBtDRaAM  exp        (D 4) 

 

   oobed RBtDRaAM  exp        (D 5) 

 

where 
DR

MM
B

tbedtwc

o





 00 ||
,     and   otwco DBMA  0|  

 

Finally the concentrations are found from 

 

 
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d

wc ZMC  / ,       
bedbed

d

bed ZMC  /       (D 6) 
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Appendix E: Reference concentrations  
 

Assuming that a net flux ( 1I ) of sediments, suspended in a turbulent flow, is established 

as a balance between settling and turbulent diffusion, the concentration of suspended 
particles can be evaluated from  
 

1ICw
z

C
K g 




         (2) 

 
where C is the sediment concentration, Wg is velocity of the sediment settling in a still 

water, K is diffusion coefficient.  

Neglecting z-dependence for 1I , and substituting expression for vertical diffusion 

coefficient  
 

0* KzuK            (3) 

 
in (2) and solving then that equation, gives the following general expression for the 

vertical profile of the sediment concentration 
 

  
gw

I
zIC 1

2 


 ,      1      (4) 

 

gw

I

z

I
C 12 





,                  1       (5) 

 

Here 
0K

wg
  (1/m),  

*

0

u

K


   (m), 0K  is the diffusivity coefficient in a viscous 

sublayer,   is van Karman constant, *u  is shear velocity, and I1 I2 are integration 

constants. 
 
Having the diffusion coefficient expressed in new variables  

 












z
KK 10 ,         (6) 

 

shows that the parameter delta can be treated as the length scale of the viscous sub-
layer. 
The integration constants in (4, 5) can be defined using data for the total mass of 

sediment in the near bottom cell DCM  0 , where D is the height of the near bottom 

computational cell, and the data for sediment concentration 1C  at the height H above 

the bed:  
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I
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

 ,      Hz  ,     (7) 
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From (7-10) the integration constants and vertical profile for the sediment concentration 

can be derived: 
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For numerical computations it is more convenient to express (11-12) as follows  
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When I1=0, the reference concentration becomes 
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In the case of constant vertical diffusion coefficient 
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solution of (2) is 
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and the integration constants can be determined from the following expressions 
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From (16-18) the solution can be expressed as  
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     1020 expexp)( CHzIzC        (20) 

 

When the vertical gradient of sediment concentration in the near bottom area is high, and 
the thickness of the sediment layer, which is to be deposited within the computational time 
step (d = w * dt), is less than the thickness of the near bottom computational cell, the 
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solution becomes grid dependant, because the portion of the sediment profile that should 
be deposited is not resolved. To estimate deposition flux analytical expression for the 
vertical profile of the sediment concentration in the near bottom computational cell can be 

used. Integrating equations (12, 14, 19) from zero to the distance d gives the following 
expressions for deposited masses of sediment: 
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Appendix F: Velocity of sediment particles in stretching media 
 

Volumetric changes in a consolidating column of the mixture of incompressible solid particles 

and incompressible water, with the sediment velocities at the top and bottom levels given by U1 

and U2 (fig. F1), can be expressed as  

 

tUUSVV ba  )()( 12
 ,        (F1) 

 

where 2V  and 1V  are total (sediment and pore water) initial and final volumes, t  is time 

interval, and S is an area of the horizontal cross-section of the column.  

 

 
Fig. F1 Schematic diagram of consolidating sediment column 

 

Dividing left and right hand sides of (F 1) by sediment volume (
sV ) and time interval, and 

taking into account that the sediment volume in the column does not change, so that 
ww

VVVV 1212  , equation (F 1) can be rewritten as 
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Using expression for void ratio (
s

w

V

V
 ) and multiplying the denominator and the divisor in 

the right hand side of (F 2) by the column thickness 1Z  gives 
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Substituting 
sV

SZ1  by )1(  , and approaching time interval t  and the column thickness 1Z  

to zero gives continuum form of the equation (F 3) 
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Appendix G: Table of notations  
 

s(*)   solid phase variable 

w(*)   liquid phase variable 
d(*)   dissolved tracer 

p(*)    tracer adsorbed by sediment 

ki
sC ,    concentration of the i-th fraction of solid tracer  [kg/(m3 mixture)] (i=1,n) 

kj
dC ,    concentration of the j-th dissolved tracer  [kg/(m3 water)] (j=1,m), and the  

kji
pC ,   concentration of the j-th tracer attached to the I-th fraction of sediment [kg/(m3 mixture)] 

(j=1,l)  

kZ        thickness of sediment or water column layer (m) 

)( kz     coordinate of the upper level of the k-th layer (m) 

)( kz     coordinate of the bottom level of the k-th layer (m) 

wV  water volume 

i
sV  volume of the I-th solid fraction 





n

i

i
ss VV

1

 total solid volume 











s

w

V

V
  void ratio  

 




 1

1

1

ni

i i
s

i
sC

.   

1  when it appears in a mass balance equation for sediments and sediment attached tracers 












1ws

w

VV

V
 porosity 

w   water density  [kg/(m3 water)]  

 
s

i  sediment density [kg/(m3 solid)] 

s

iU   velocity of the i-th fraction of the sediment particles in a time invariant coordinate 

system; 
s

ciU ,
  sediment velocity given in a time-invariant coordinate frame 

s

cU   velocity of consolidating/swelling sediment particles (m/s) 

s

iU
~

  apparent velocity of sediment particles in a time-varying coordinate frame (m/s) 

wU
~

      apparent water velocity in a depth-adapted coordinate system (m/s) 
s

i   diffusion coefficient for solid tracers (m2/s) 

d

i   diffusion coefficient for the dissolved tracer (m2/s)  

s

iQ   resuspension / deposition flux of the i-th fraction of particulate tracer  [kg/(m2 s)];  

bwi /,   void ratio of either fresh deposits or eroded bed 

bedi,   void ratio of the top sediment layer 

wci,   void ratio of fresh deposits  

 topz   surface level of water column  

 botz   bottom level of sediment bed 
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bedz  “sediment – water” interface  

az    bottom of an active sediment layer  

ah   thickness of an active sediment layer 

m   ultimate maximal void ratio of a self-weight consolidating sediments  

cT   time scale of the sediment bed swelling/consolidation 

s

rC   actual sediment concentration at the reference level  
s

eqC   equilibrium reference concentration. 

iS    normalised excess skin friction 


bi    skin friction (N/ m2) 

ci  critical shear stress for initiation of a non-cohesive sediment erosion (N/ m2)   

a  empirical constant a = 0.002  

d mean sediment diameter (m) 

M   resuspension rate on cohesive bed  

ce   critical shear stresses of cohesive sediment erosion (N/ m2) 

cd   critical shear stresses of cohesive sediment deposition (N/ m2)  

cu*
   friction velocity (m/s) 

ru  reference velocity (m/s)   

30

N

o

k
z   bottom roughness (m)  

Nk     Nikuradze roughness length (m) 

   ripples height 

   ripples length 
s

wciC ,
 sediment concentration in the near bottom water cell 

s

bediC ,
 sediment concentration in an active sediment layer 

   rate constant for mixing of the solid particled across “sediment – water” interface 

   rate constant for mixing of the dissolved tracers across “sediment – water” interface 
d

o   diffusion coefficient for mixing of the dissolved tracers across “sediment – water” 

interface 
s

o   diffusion coefficient for mixing of the solid particles across “sediment – water” interface 

wcZ   thickness of the near bottom grid cell 

bedZ   thickness of the top sediment layer 

   minimal thickness of sediment layer 

ẑ   k-grid coordinates 

z~   sigma grid coordinates 
p   weighting constant 

   Van Karman constant 0.42 

K  diffusion coefficient ??? 

*u   shear velocity (m/s) 

w   length scale of a turbulent wave bottom boundary layer (m) 
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Appendix H: Model parameters 
 

Parameter Description Dimension Cited values Model values 

w  Water density   [kg/(m3 

water)] 

1025 1025 

s

i  Sediment density  [kg/(m3 solid)] - 2650  

s

i  Vertical diffusion coefficient for 

solid particles in sediment bed  

(m2/s) 10-11 – 10-9  10-10 

d

i  Vertical diffusion coefficient for 

the dissolved tracers in sediment 

bed  

(m2/s) 10-11 – 10-9  10-10 

giW  Settling velocity of suspended 

sediment particles (m/s) 

m/s 10-1 – 10-6 Sand: 0.2 – 

0.003  

Silt:  3 10-3 – 

10-5 

A Empirical constant in the formula for 

equilibrium concentration of non-

cohesive sediments 

nondim 10-5 – 2 10-3 

 

2 10-3 

 

Z_ref Reference height in the formula for 

equilibrium concentration of non-

cohesive sediments 

m 3 ~ 7 (grain 

diameters)  

7 (grain 

diameters) 

M  Empirical constant in the formula 

for cohesive sediment resuspension  

[kg/ (m2 s)] 1.7 10-5  -   

4.4 10-3 
M =0.002

ce  

ce  Critical shear stresses of cohesive 

sediment erosion  

N/ m2 0.05 – 5 0.2  

 

cd  Critical shear stresses of cohesive 

sediment deposition  

N/ m2  0.2 - inf inf 

oz  Bottom grain roughness parameter  m 2 10-3 – 10-5 (grain 

diameter) / 

30 

ah  Thickness of an active sediment layer  m 0 – 0.007 (m) , 

0.5   

Max(0.005, 

0.5 ) 

  Ripples height  m 0 – 1 - 

  Ripples length  m 0 – 10 - 

wci,  Void ratio of fresh deposits nondim 0.6 – 0.9 - 

m  Ultimate maximal void ratio of a self-

weight consolidating sediments 

nondim 0.4 - 0.6 - 

cT  Time scale of the sediment bed 

swelling/consolidation 

day - 1 – 100 

d

o  Diffusion coefficient for mixing of 

the dissolved tracers across 

“sediment – water” interface 

m2/s - d

i  

s

o  Diffusion coefficient for mixing of 

the solid particles across “sediment – 

water” interface 

m2/s - s

i  

p  K-sigma grid weighting constant Nondim - 10-3 – 10-4 
  Van Karman constant  Nondim 0.42 0.42 

 

 


