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ABSTRACT  

Ensuring the aquaculture feeds (aquafeeds) meet the expected nutritional and physical 

specifications is paramount in research and commercial aquaculture. This approach reduces the 

risk of experimental failure and costly rework as well as the disposal of unsuitable commercial 

diets. This study aimed to produce a single NIR model capable of predicting the proximate 

composition and starch damage of aquafeeds. We had access to a historical library of samples 

(ingredients and diets), as well as manufacturing diets (extrusion and steaming). The diets were 

ground before scanning by NIRS, then models were developed to estimate dry matter, ash, 

lipid, protein, and energy as well as starch damage. Proximate prediction models were 

successfully produced for diets and ingredients with R2 values between 0.88 and 0.97, while 

starch damage models were produced with R2 values between 0.91 and 0.97. The developed 

NIR models allow to rapidly monitor the nutritional composition, as well as one of the main 

physical properties of the diets before undertaking experimental work. These models could be 

used by any aquaculture laboratory and aquafeed company wanting to have a rapid quality 

control check of their diets. 

 

INTRODUCTION  

Production of aquafeeds is an expensive exercise both in the cost of resources and in man-

hours. Currently, checking whether aquafeeds meet or not the expected formulations by 

classical chemistry methodology is time-consuming. This is a common concern in research and 

commercial  feed manufacturing facilities. For example, a failure of an experiment due to 

inaccurate diet composition will require repeating, doubling its expected cost. Whilst, for 

commercial feed companies producing tons of feed per hour nonstop, the benefits of adjusting 

formulation inaccuracies in real-time as opposed to days later are enormous.  Optimisation of 

workflow and improvements in quality control in these facilities can help to reduce these costs.  



This study aimed to produce a single NIR model capable of predicting the proximate 

composition and starch damage of aquafeeds to reduce lead-time required between diet 

manufacturing and quality control approval checks.  

METHODS AND MATERIALS  

To prepare the diet calibration, a set of 60 diet samples were selected from a historical library 

of samples produced for previous work (ingredients and diets) to cover a range of aquatic 

species. A total of 83 ingredients used in the preparation of those diets were used for the NIR 

ingredient calibration. For the starch cook prediction model, five basic aquafeed formulations 

with increasing starch content and different botanical sources (wheat, tapioca, rice, and 

potato) were prepared. For each formulation, thirty kilograms of each mash was made before 

being subsampled for different diet manufacturing processes (extrusion and steaming) relevant 

for fish and prawns. The mash feed rate, moisture addition, and screw speed were manipulated 

to give a range of different samples, with varying specific mechanical energy (SME) inputs and 

different levels of gelatinisation/cook. The samples were ground to pass through a 750 micron 

screen before being subjected to NIR analysis. 

Spectroscopy and analysis:  

The samples were scanned using a Pertin DA7200 Diode Array NIR Spectrometer. The samples 

were then scanned in reflectance mode over wavelengths from 950 nm to 1650 nm at 1 nm 

intervals and their spectra recorded. A total of 6 scans were completed for each sample, 3 prior 

to, and 3 after repacking. All scans were done at room temperature, ~24°C, with the sample, 

rotated while scanning to increase sample exposure to the NIR instrument. Background 

corrections were taken before each scan and the average of all recorded spectra for each 

sample was used in the preparation of the models.  

Partial least squares (PLS) regression was used in the construction of the near infrared spectra 

models using the Unscrambler X software (Camo, version 10.3). The raw scans were subjected 

to several pre-treatment options including area normalisation (AN), smoothing (S), first 

derivative (1D), and a combination of the former. Random segmented cross-validation was 

used during model construction using 20 segments at 7 samples per segment. 

The statistics calculated for assessing the robustness of the calibration models included the 

number of principal components (PCs), the correlation coefficient between predicted and 

measured composition (R2), and the standard error of cross-validation (RMSECV). RMSECV is 

the standard deviation of differences of the residuals between the NIRS and chemically 

determined concentrations and has been reported to be the best estimate for the prediction 

capability of calibrations (refs). The best models were selected based on the lowest RMSECV 

and the highest R2 of the cross-validations. The residual predictive deviation (RPD) was 

calculated as the standard deviation of the measured composition (SD) divided by the RMSECV 

to evaluate the performance of the calibrations. 

RESULTS  

Prediction models were successfully produced for diets and ingredients which showed the 

coefficient of determination of the measured and predicted values where R2 values were 



greater than 0.88 and are suitable to be used for quality control analyses (Table 1). It should be 

noted that due to the chemical properties of the samples, it was necessary to only produce a 

nitrogen ingredient calibration vs a protein equivalent calibration for the diets.  

A comparison of model predicted values to analytically measured values indicated that NIRS 

was able to provide fast and accurate checks of the chemical composition of diets, regardless of 

the method of manufacture or species. The NIR models were able to predict proximate 

composition within 1.5%, which is consistent with the accuracy achieved in the laboratory.  

Starch damage models for both diet manufacture methods and a combined model were 

produced. The combined model used both extruded and steamed samples to produce a generic 

starch damage model. The model successfully predicted the degree of starch damage, with a R2 

value of 0.915 and 5.76% SECV value for the cross-validation set. This high SECV value along 

with the RPD and RER values of 1.2 and 7.2, respectively, indicates the model is suitable for 

screening samples only. Models produced for the individual production methods show 

improvements in SECV, RPD and RER values that are somewhat suitable for process quality 

control. Thus the improvement of the models suggests that each type of diet pelleting process 

requires a dedicated model to provide more robust results. 

CONCLUSIONS  

We were able to produce models that allowed us to use NIR instead of analytical chemical 

methods for quality control checks on aquafeed proximate composition and starch damage, 

saving both time and money by reducing the lead-time between experimental diet 

manufacturing and trial commencement, as well as using them for near-realtime adjustment of 

feed composition for commercial operations.   

  



 

 TABLE 1. NIR Model Statistics. 

 

 
 

 

Component Transformations PCs  R2 SECV RPD RER Validation
Validation 

Error

Dry Matter

Smoothing:SG, 2nd order, 9 points; Area 

Normilisation; 1st Driv, SG 2nd order, 9 Smoothing;  

950-1650; 49 Samples

9 0.909 0.74 9.1 55.8 0.870 1.15

Ash

Smoothing:SG, 2nd order, 9 points; Area 

Normilisation; 1st Driv, SG 2nd order, 9 Smoothing;  

950-1650; 70 Samples

5 0.909 1.40 4.8 29.6 0.905 1.62

Lipid

Smoothing:SG, 2nd order, 9 points; Area 

Normilisation; 1st Driv, SG 2nd order, 9 Smoothing;  

950-1650; 83 Samples

5 0.967 1.97 3.4 21.0 0.888 2.64

Lipid

Smoothing:SG, 2nd order, 9 points; Area 

Normilisation; 1st Driv, SG 2nd order, 9 Smoothing;  

950-1650; 82 Samples

5 0.883 1.93 3.5 21.5 0.863 2.32

Nitrogen

Smoothing:SG, 2nd order, 9 points; Area 

Normilisation; 1st Driv, SG 2nd order, 9 Smoothing;  

950-1650; 83 Samples

6 0.913 1.32 5.1 31.3 0.902 1.55

Energy

Smoothing:SG, 2nd order, 9 points; Area 

Normilisation; 1st Driv, SG 2nd order, 9 Smoothing;  

950-1650; 71 Samples

4 0.893 2.05 3.3 20.2 0.879 0.86

Lipid

Smoothing:SG, 2nd order, 9 points; Area 

Normilisation; 1st Driv, SG 2nd order, 9 Smoothing;  

950-1650; 67 Samples

5 0.959 0.74 9.2 56.3 0.954 0.85

Ash

Smoothing:SG, 2nd order, 9 points; Area 

Normilisation; 1st Driv, SG 2nd order, 9 Smoothing;  

950-1650; 101 Samples

13 0.954 0.75 9.0 55.4 0.903 1.09

Energy

Smoothing:SG, 2nd order, 9 points; Area 

Normilisation; 1st Driv, SG 2nd order, 9 Smoothing;  

950-1650; 81 Samples

5 0.919 0.43 15.6 95.9 0.897 0.50

Protein

Smoothing:SG, 2nd order, 9 points; Area 

Normilisation; 1st Driv, SG 2nd order, 9 Smoothing;  

950-1650; 69 Samples

9 0.973 1.46 4.6 28.3 0.958 1.90

Dry Matter

Smoothing:SG, 2nd order, 9 points; Area 

Normilisation; 1st Driv, SG 2nd order, 9 Smoothing;  

950-1650; 68 Samples

8 0.894 0.62 10.9 66.7 0.775 0.89

% Starch 

Damage

Area Normilisation; 1st Driv, SG 2nd order, 9 

Smoothing;  954-1646; 149 Samples
10 0.915 5.76 1.2 7.2 0.870 7.77

% Starch 

Damage 

Steamed

Area Normilisation; 1st Driv, SG 2nd order, 9 

Smoothing;  954-1646; 19 Samples
5 0.976 3.68 1.8 11.2 0.934 5.89

% Starch 

Damage 

Extruded

Area Normilisation; 1st Driv, SG 2nd order, 9 

Smoothing;  954-1646; 1111 Samples
9 0.919 3.60 1.9 11.5 0.919 4.77
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